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Abstract

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task
or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible
futures before acting. For such planning to be rational, the benefits of planning to future behavior must
at least compensate for the time spent thinking. Here we capture these features of human behavior by
developing a neural network model where not only actions, but also planning, are controlled by prefrontal
cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by
sampling imagined action sequences drawn from its own policy, which we refer to as ‘rollouts’. Our results
demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability
in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent
closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in
terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides
a new theory of how the brain could implement planning through prefrontal-hippocampal interactions,
where hippocampal replays are triggered by – and in turn adaptively affect – prefrontal dynamics.

Introduction1

Humans and other mammals have a unique ability2

to adapt rapidly to new information and chang-3

ing environments. Such adaptation often involves4

spending extended and variable periods of time con-5

templating possible futures before taking an action6

(Callaway et al., 2022; van Opheusden et al., 2021).7

For example, we might take a moment to think8

about which route to take to work depending on9

traffic conditions. The next day, some roads might10

be blocked due to roadworks, requiring us to adapt11

and mentally review the available routes in a pro-12

cess of re-planning before leaving the house. Since13

thinking does not involve the acquisition of new in-14

formation or interactions with the environment, it15

is perhaps surprising that it is so ubiquitous for hu-16

man decision making. However, thinking allows us17

to perform more computations with the available18

information, which can lead to improved perfor-19

mance on downstream tasks (Bansal et al., 2022).20

Since physically interacting with the environment21

can consume time and other resources, or incur un-22

necessary risk, the benefits of planning often more23

than make up for the time that was lost to the24

planning process itself.25

Despite a wealth of cognitive science research on26

the algorithmic underpinnings of planning (Solway27

and Botvinick, 2012; Callaway et al., 2022; Mat-28

tar and Daw, 2018; Mattar and Lengyel, 2022),29

little is known about the underlying neural mecha-30

nisms. This question has been difficult to address31

due to a scarcity of intracortical recordings dur-32

ing planning, and during contextual adaptation33

more generally. However, neuroscientists have be-34

gun to collect large-scale neural recordings during35

increasingly complex behaviors from the hippocam-36

pus and prefrontal cortex, brain regions known to37

be important for memory, decision making, and38

adaptation (Widloski and Foster, 2022; Pfeiffer and39

Foster, 2013; Gillespie et al., 2021; Wang et al.,40

2018; Samborska et al., 2022; Jadhav et al., 2016;41

Wu et al., 2017). These studies have demonstrated42

the importance of prefrontal cortex for generalizing43

abstract task structure across contexts (Wang et al.,44
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2018; Samborska et al., 2022). Additionally, it has45

been suggested that planning could be mediated by46

the process of hippocampal forward replays (Pfeif-47

fer and Foster, 2013; Widloski and Foster, 2022;48

Mattar and Daw, 2018; Agrawal et al., 2022; Fos-49

ter, 2017; Jiang et al., 2022; Johnson and Redish,50

2007). Despite these preliminary theories, little is51

known about how hippocampal replays could be52

integrated within the dynamics of downstream cir-53

cuits to implement planning-based decision making54

and facilitate adaptive behavior (Jai and Frank,55

2015). While prevailing theories of learning from re-56

plays generally rely on dopamine-mediated synaptic57

plasticity (Gomperts et al., 2015; Mattar and Daw,58

2018; De Lavilléon et al., 2015), it is currently un-59

clear whether this process could operate sufficiently60

fast to also inform online decision making.61

It has recently been suggested that some forms of62

fast adaptation could result from recurrent meta-63

reinforcement learning (meta-RL; Wang et al., 2018,64

2016; Duan et al., 2016). Such meta-RL mod-65

els posit that adaptation to new tasks can be di-66

rectly implemented by the recurrent dynamics of67

the prefrontal network. The dynamics themselves68

are learned through gradual changes in synaptic69

weights, which are modified over many different70

environments and tasks in a slow process of rein-71

forcement learning. Importantly, such recurrent72

neural network (RNN)-based agents are able to73

adapt rapidly to a new task or environment after74

training by integrating their experiences into the75

hidden state of the RNN, with no additional synap-76

tic changes (Wang et al., 2018, 2016; Duan et al.,77

2016; Zintgraf et al., 2019; Alver and Precup, 2021).78

However, previous models are generally only capa-79

ble of making instantaneous decisions and thus do80

not have the ability to improve their choices by81

‘thinking’ prior to taking an action. Wang et al.82

(2018) explored the possibility of allowing multiple83

steps of network dynamics before making a deci-84

sion, but this additional computation was also pre-85

determined by the experimenter and not adaptively86

modulated by the agent itself.87

In this work, we propose a model that similarly com-88

bines slow synaptic learning with fast adaptation89

through recurrent dynamics in the prefrontal net-90

work. In contrast to previous work, however, this91

recurrent meta-learner can choose to momentarily92

forgo physical interactions with the environment93

and instead ‘think’ (Hamrick et al., 2017; Pascanu94

et al., 2017). This process of thinking is formalized95

as the simulation of sequences of imagined actions,96

sampled from the policy of the agent itself, which97

we refer to as ‘rollouts’ (Figure 1A). We introduce98

a flexible maze navigation task to study the rela-99

tionship between the behavior of such RL agents100

and that of humans (Figure 1B). In this task, both101

human participants and RL agents (collectively ‘sub-102

jects’) have to discover the spatial location of an103

unknown goal in a novel environment, and they sub-104

sequently have to return to this goal from multiple105

different starting locations (Morris, 1981; Banino106

et al., 2018). Intriguingly, RL agents trained on this107

task learn to use rollouts to improve their policy and108

better generalize to previously unseen environments,109

and they selectively trigger rollouts in situations110

where humans also spend more time deliberating.111

Additionally, we draw explicit parallels between the112

model rollouts and hippocampal replays through113

novel analyses of recent hippocampal recordings114

from rats performing a similar maze task (Widloski115

and Foster, 2022). We find that the content and116

behavioral effects of hippocampal replays in this117

dataset have a striking resemblance to the content118

and effects of policy rollouts in our computational119

model. Our work thus addresses two key questions120

from previous studies on hippocampal replays and121

planning. First, we show that a recurrent network122

can meta-learn when to plan instead of having to123

precompute a ‘plan’ in order to decide whether to124

use it (Mattar and Daw, 2018; Russek et al., 2022).125

Second, we propose a new theory of replay-mediated126

planning, which utilizes fast network dynamics for127

real-time decision making that could operate in par-128

allel to slower synaptic plasticity (Gomperts et al.,129

2015). To formalize this second point, we provide a130

normative mathematical theory of how replays can131

improve decision making via feedback to prefrontal132

cortex by approximating policy gradient optimiza-133

tion (Sutton and Barto, 2018). We show that such134

an optimization process naturally arises in our RL135

agent trained for rapid adaptation and suggest that136

biological replays could implement a similar process137

of rollout-driven decision making (Figure 1C).138

Our work provides new insights into the neural un-139

derpinning of ‘thinking’ by bridging the gap between140

recurrent meta-RL (Wang et al., 2018), machine141

learning research on adaptive computation (Ham-142

rick et al., 2017; Graves, 2016; Banino et al., 2021),143

and theories of meta-cognition (Griffiths et al., 2015;144

Botvinick and Cohen, 2014; Botvinick et al., 2020).145

We link these idea to the phenomenon of hippocam-146

pal replays and provide a new theory of how forward147

replays can modulate behavior through recurrent148

interactions with prefrontal cortex.149
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Figure 1: Task and model schematics. (A) The RL agent consisted of a recurrent neural network, which
received information about the environment and executed actions in response. The primary output of the
agent was a policy from which the next action was sampled. This action could either be to move in the
environment in a given direction (up, down, left or right), or to ‘plan’ by using an internal world model to
simulate a possible future trajectory (a ‘rollout’). The agent was trained to maximize its average reward
per episode and to predict (i) the upcoming state, (ii) the current goal location, and (iii) the value of the
current state. When the agent decided to plan, the first two predictors were used in an open-loop planning
process, where the agent iteratively sampled ‘imagined’ actions and predicted what the resulting state would
be, and whether the goal had been (virtually) reached. The output of this planning process was appended
to the agent’s input on the subsequent time step (details in text). A physical action was assumed to take
400 ms and a rollout was assumed to take 120 ms. (B) Schematic illustrating the dynamic maze task. In
each episode lasting T = 20 seconds, a maze and a goal location were randomly sampled. Each time the goal
was reached, the subject received a reward and was subsequently “teleported” to a new random location,
from which it could return to the goal to receive more reward. The maze had periodic boundaries, meaning
that subjects could exit one side of the maze to appear at the opposite side. (C) Schematic illustrating
how policy rollouts can improve performance by altering the momentary policy. An agent might perform a
policy rollout leading to low value (top; black), which would decrease the probability of physically performing
the corresponding sequence of actions. Conversely, a rollout leading to high value (bottom; orange) would
increase the probability of the corresponding action sequence. Notably, these policy changes occur at the
level of network dynamics rather than parameter updates.

Results150

Humans think for different durations in dif-151

ferent contexts152

To characterize the behavioral signatures of plan-153

ning, we recruited 94 human participants from Pro-154

lific to perform an online experiment. The experi-155

ment consisted of a maze navigation task in which156

the walls and goal location periodically changed,157

thus requiring rapid adaptation. The environment158

was a 4 × 4 grid with periodic boundaries, a set159

of impassable walls, and a single hidden reward160

location (Figure 1B; Methods). The task consisted161

of a succession of ‘episodes’, each lasting T = 20162

seconds. At the beginning of each episode, both the163

wall configuration and the reward location were ran-164

domly initialized and remained fixed until the next165

episode. The initial position of the subject was also166

randomly sampled. Subjects first had to explore the167

maze by taking discrete steps in the cardinal direc-168

tions until they found the hidden reward location.169

Upon finding this goal, subjects were immediately170

moved to a new random location, initiating a phase171

of exploitation during which they repeatedly had172

to return to the same goal (Figure 1B). We refer173

to a single instance of navigating from a random174

starting location to the goal as a ‘trial’. To encour-175

age good performance, human participants were176

paid a monetary bonus proportional to the average177

number of trials completed per episode (Methods;178

Figure S1), and the behavior of all subjects was179

recorded over 40 episodes.180
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We first examined human performance as a func-181

tion of trial number within each episode, comparing182

the first exploration trial with subsequent exploita-183

tion trials. We found that participants exhibited a184

rapid ‘one-shot’ transition to goal-directed naviga-185

tion after the initial exploration phase (Figure 2A,186

black). This was true even though each new maze187

was not seen before, and it is consistent with pre-188

vious work demonstrating the ability of humans189

and animals to adapt rapidly to new information in190

a ‘meta-learning’ setting (Wang et al., 2018). We191

next investigated the time participants spent think-192

ing during the exploitation phase. We estimated193

the ‘thinking time’ for each action as the posterior194

mean under a probabilistic model that decomposes195

the total response time for each action (Figure 2B;196

top) into the sum of the thinking time (Figure 2B;197

bottom) and a perception-action delay. The prior198

distribution over perception-action delays was es-199

timated for each individual using a separate set of200

trials, where participants were explicitly cued with201

the optimal path and thus did not have to plan a202

route themselves (Methods; Figure S1). Since the203

first step within each trial required participants to204

parse their new position in the maze, a separate205

prior was fitted for the first action in a trial.206

Participants exhibited a wide distribution of think-207

ing times during the exploitation phase of the task208

(Figure 2B; bottom). To reveal any task-related209

structure in this variability, we partitioned thinking210

times by within-trial action number and by distance211

to goal (Figure 2C). We found that participants ex-212

hibited longer thinking times when further from213

the goal, consistent with planning of longer routes214

taking more time. Furthermore, subjects exhibited215

substantially longer thinking times for the first ac-216

tion of each trial (Figure S2), consistent with them217

having to initially plan a new route to the goal.218

These patterns confirm that the broad marginal219

distribution of thinking times (Figure 2B) does not220

simply reflect a noisy decision-making process or221

task-irrelevant distractions. On the contrary, vari-222

ability in thinking time is an important feature of223

human behavior that reflects the variable moment-224

to-moment cognitive demands for decision making.225

A recurrent network model of planning226

To model the rapid adaptation and the detailed pat-227

terns of thinking times displayed by human subjects,228

we considered an RNN model trained in a meta-229

reinforcement learning setting (Figure 1A; Methods;230

Duan et al., 2016; Wang et al., 2016, 2018; see Sup-231

plementary Note for a more in-depth discussion and232

motivation of our modeling choices). The RL agent233

consisted of 100 gated recurrent units (GRUs; Cho234

et al., 2014; Figure S3) and was characterized by235

a time-varying internal activation state hk, which236

evolved dynamically according to237

hk = ϕθ(xk,hk−1) (1)
yk = ζθ(hk). (2)

Here, θ denotes the set of all model parameters,238

xk are momentary inputs to the RNN, and yk are239

momentary network outputs computed from the240

current state hk, which was reset at the beginning241

of each episode. k indexes the evolution of the242

network dynamics and can in general be different243

from the wallclock time t in agents that have the244

ability to ‘think’ for variable periods of time (see be-245

low). Inputs consisted of the current agent location246

sk, the previous action taken ak−1 and associated247

reward signal rk−1, the elapsed time t since the248

beginning of the episode, and the locations of all249

walls (Methods). Thus, while the reward location250

was hidden and had to be both discovered and251

memorized, the rest of the environment was fully252

observed. Outputs consisted primarily of a policy253

πθ(ak|hk), i.e. a set of probabilities associated with254

each possible action, which depended on the current255

hidden state of the RNN. At each step, an action256

ak was sampled from this distribution and triggered257

changes in the environment ψ according to:258

xk+1, sk+1 = ψ(ak, sk). (3)

This yielded both a new location sk+1 of the agent259

and the new inputs xk+1, which were fed back to260

the agent on the subsequent iteration (Figure 1A).261

In addition to the policy, the output of the agent262

included a value function and predictions of the263

new location and current goal location.264

As in standard RL settings, we quantified the per-265

formance of the agent in a given environment as266

the expected total reward,267

J(θ) = Eπθ

[
K∑

k=1
rk

]
. (4)

Training proceeded by gradually adjusting the pa-268

rameters θ to maximize the average J(θ) across269

environments, using a policy gradient algorithm270

(Methods; Sutton and Barto, 2018; Wang et al.,271

2018). In Equation 4, K refers to the total number272

of iterations in an episode, with each episode ter-273

minating once t exceeded the episode duration of274

T = 20 seconds as in the human data (Figure 1B).275
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Since our agent had no intrinsic notion of wallclock276

time, we considered each discrete action to con-277

sume ∆t = 400 ms, meaning that there was time278

for 50 actions in a single RL episode. This was279

calculated to approximately match the number of280

actions taken in a typical RL episode to the human281

data. In this canonical formulation, the RL agent282

always takes an instantaneous action in response to283

a given set of inputs. It therefore does not have any284

ability to perform temporally extended planning,285

implying constant (zero) ‘thinking time’ in all situa-286

tions. As a consequence, such a canonical meta-RL287

agent cannot explain the salient patterns of think-288

ing times observed in human participants (recall289

Figure 2C). At first glance, temporally extended290

planning might also appear unnecessary in the RL291

agent, since it already has access to the current292

state, wall configuration, and reward information293

needed for decision making. However, this was also294

the case for our human participants, who chose to295

spend time thinking nonetheless. We hypothesized296

that the RL agent could similarly benefit from the297

ability to trade off time for additional processing of298

the available information in difficult tasks, where299

the agent has not learned a perfect policy (Hamrick300

et al., 2017; Pascanu et al., 2017).301

To investigate the effect of such thinking for recur-302

rent meta learners and account for the observed303

variability in human thinking times, we augmented304

the RL agent with the ability to perform temporally305

extended planning in the form of imagined policy306

rollouts. Specifically, we expanded the action space307

of the agent to give it the option of sampling a308

hypothetical trajectory from its own policy at any309

moment in time (a ‘rollout’; Figure 1A; Hamrick310

et al., 2017; Pascanu et al., 2017). In other words,311

the agent was allowed to either perform a physical312

action, or to perform a mental simulation of its313

policy. If the agent chose to perform a rollout, a314

flattened array of the imagined action sequence was315

fed back to the network as additional inputs on the316

subsequent time step, together with an indication317

of whether or not the simulated action sequence318

reached the goal. These inputs in turn affected the319

policy by modulating hk through a set of learnable320

input weights (Figure 1A). This is reminiscent of321

canonical RL algorithms that change their param-322

eters θ to yield a new and improved policy on the323

basis of trajectories sampled from the current policy.324

In our formulation of planning, the agent’s policy is325

instead induced by the hidden state hk, which can326

similarly be modulated on the basis of the imagined327

policy rollouts to improve performance.328

Each rollout was terminated either upon reaching329

the goal, or after a maximum duration of 8 simu-330

lated actions (see Figure S3 for different network331

sizes and maximum planning horizons). Impor-332

tantly, both the generation of a mental rollout and333

the corresponding success feedback relied on an334

internal model of the environment that was ob-335

tained from the agent itself. This internal model336

was trained alongside the RNN and the policy, by337

learning to predict the reward location and state338

transitions from the momentary hidden state of339

the RNN (hk) and the action taken (ak; Meth-340

ods; Figure S4). Thus, rollouts did not provide341

the agent with any privileged information that it342

did not already possess. Instead, they allowed the343

agent to trade off time for additional computational344

capacity – similar to thinking in humans and other345

animals. Furthermore, to capture the fact that men-346

tal simulation is faster than physical actions (Liu347

et al., 2019; Kurth-Nelson et al., 2016), we assumed348

each full rollout to consume only 120 ms. In other349

words, a single iteration of the network dynamics350

(k → k + 1 in Equation 1) incremented time by351

120 ms if the agent chose to perform a rollout and352

400 ms if the agent chose a physical action. This al-353

lowed the agent to perform many simulated actions354

in the time it would take to physically move only a355

short distance (Agrawal et al., 2022). Importantly,356

since an episode had a fixed duration of 20 seconds,357

choosing to perform more rollouts had a temporal358

opportunity cost by leaving less time for physical359

actions towards the goal.360

Biologically, we interpret these mental simulations361

as prefrontal cortex (the RNN) interacting with the362

hippocampal formation (the world model), which363

allows the agent to simulate a sequence of state364

transitions from the current policy and evaluate365

their consequences. Importantly, while we endowed366

the agent with the ability to perform policy rollouts,367

we did not build in any prior knowledge about when,368

how, or how much they should be used. The agent369

instead had to learn this over the course of train-370

ing on many different environments. Therefore,371

while the rollouts phenomenologically resembled372

hippocampal forward replays by design, our compu-373

tational model allowed us to investigate (i) whether374

and how such rollouts can drive policy improve-375

ments, (ii) whether their temporal patterns can376

explain human response times, and (iii) whether bi-377

ological replays appear to be implementing a similar378

computation.379

The RL agent was trained by slowly adjusting its pa-380

rameters θ over 8×106 episodes, sampled randomly381
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Figure 2: Trained RL agents perform more rollouts in situations where humans spend longer
thinking. (A) Performance – quantified as the number of actions needed to reach the goal – as a function
of trial number within each episode, computed for both human participants (black) and RL agents (blue).
Shading indicates standard error of the mean across human participants (n = 94) or RL agents (n = 5)
and mostly falls within the interval covered by the solid lines. Gray line indicates optimal performance,
computed separately for exploration (trial 1) and exploitation (trials 2-4; Methods). (B) Distribution of
human response times (top) and thinking times (bottom), spanning ranges on the order of a second (Methods).
(C) Human thinking time as a function of the step-within-trial (x-axis) for different initial distances to the
goal at the beginning of the trial (lines, legend). Shading indicates standard error of the mean across 94
participants. Participants spent more time thinking further from the goal and before the first action of each
trial (Figure S2). (D) Model ‘thinking times’ separated by time-within-trial and distance-to-goal, exhibiting
a similar pattern to human participants. To compute thinking times for the model, each rollout was assumed
to last 120 ms as described in the main text. Shading indicates standard error of the mean across 5 RL agents.
(E) Binned human thinking time as a function of the probability that the agent chooses to perform a rollout,
π(rollout). Error bars indicate standard error of the mean within each bin. Gray horizontal line indicates a
shuffled control, where human thinking times were randomly permuted before the analysis. (F) Correlation
between human thinking time and the regressors (i) π(rollout) under the model, (ii) distance-to-goal, and
(iii) π(rollout) after conditioning on distance-to-goal (‘residual’; Methods). Bars and error bars indicate mean
and standard error across human participants (n = 94).

from 2.7× 108 possible environment configurations.382

This implied that the majority of environments seen383

at test time would be novel to the agent, requir-384

ing generalization across tasks. Parameter adjust-385

ments followed the gradient of a cost function that386

combined terms designed to (i) maximize the ex-387

pected reward in Equation 4, (ii) learn the internal388

model by accurately predicting the reward location389

and state transitions, and (iii) minimize a standard390

entropy cost to encourage exploration (Methods;391

Wang et al., 2016). Importantly, parameters were392

frozen after training, and the agent adapted to the393

wall configuration and goal location of each new394

environment using only internal network dynamics395

(Wang et al., 2018; Duan et al., 2016).396

Human thinking times correlate with agent397

rollouts398

Having specified our computational model of plan-399

ning, we analyzed its behavior and compared it to400

that exhibited by humans. We trained 5 copies of401

our RL agent to solve the same task as the human402

participants and found that the agents robustly403

learned to navigate the changing maze. Similar to404

humans, the trained agents exhibited a rapid tran-405

sition from exploration to exploitation upon finding406

the reward, reaching near-optimal performance in407

both phases (Figure 2A, blue). This confirmed that408

these RNNs are capable of adapting to changing409

environments using only internal network dynamics410

with fixed parameters, corroborating previous work411
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on recurrent meta-RL (Wang et al., 2018; Duan412

et al., 2016; Banino et al., 2018). The trained net-413

works also used their capacity to perform rollouts,414

choosing to do so approximately 30% of the time.415

Importantly, there was temporal variability in the416

probability of performing a rollout, and the net-417

works sometimes performed multiple successive roll-418

outs between consecutive physical actions. When419

we queried the conditions under which the trained420

agents performed these rollouts, we found strik-421

ing similarities with the pattern of human thinking422

times observed previously. In particular, the RL423

agent performed more rollouts earlier in a trial and424

further from the goal (Figure 2D) – situations where425

the human participants also spent more time think-426

ing before taking an action (Figure 2C). On average,427

thinking times in the RL agent were approximately428

50 ms lower than in humans. This difference could429

e.g. be due to (i) the choice of prior in the proba-430

bilistic model used to infer human thinking times,431

(ii) the agent having a better ‘base policy’ than432

humans, or (iii) the hyperparameters determining433

the temporal cost of planning.434

To further study the relationship between rollouts435

and human ‘thinking’, we simulated the RL agent436

in the same environments as the human partici-437

pants. We did this by clamping the physical actions438

of the agent to those taken by the participants,439

while still allowing it to sample on-policy rollouts440

(Methods). In this setting, the agent’s probability441

of choosing to perform a rollout when encounter-442

ing a new state, π(rollout), was a monotonically443

increasing function of human thinking time in the444

same situation (Figure 2E). The Pearson correlation445

between these two quantities was r = 0.186± 0.007446

(mean ± sem across participants), which was sig-447

nificantly higher than expected by chance (Fig-448

ure 2F, ‘π(rollout)’; chance level r = 0±0.004). An449

above-chance correlation between thinking times450

and π(rollout) of r = 0.070 ± 0.006 persisted af-451

ter conditioning on the distance-to-goal (Figure 2F,452

‘residual’), which was also correlated with thinking453

times (r = 0.272± 0.006). The similarity between454

planning in humans and RL agents thus extends455

beyond this salient feature of this task, including456

an increased tendency to plan on the first step of a457

trial (Figure S2).458

In addition to the similarities during the exploitation459

phase, a significant correlation was also observed460

between human thinking time and π(rollout) dur-461

ing exploration (r = 0.098± 0.008). In this phase,462

both humans and RL agents spent more time think-463

ing during later stages of exploration (Figure S5).464

Model rollouts during exploration corresponded to465

planning towards an imagined goal from the pos-466

terior over goal locations, which becomes narrower467

as more states are explored (Figure S5). This find-468

ing suggests that humans may similarly engage469

in increasingly goal-directed behavior as the goal470

posterior becomes narrower over the course of ex-471

ploration. Taken together, our results show that a472

meta-reinforcement learning agent, endowed with473

the ability to perform rollouts, learns to do so in474

situations similar to when humans appear to plan.475

This provides a putative normative explanation for476

the variability in human thinking times observed in477

the dynamic maze task.478

Rollouts improve the policy of the RL agent479

In the previous section, we saw that an RL agent480

can learn to use policy rollouts as part of its decision481

making process, and that the timing and number of482

rollouts correlates with variability in human think-483

ing times. In this section, we aim to understand484

why the agent chooses to perform rollouts and how485

they guide its behavior. To do this, we considered486

the agent right after it first located the goal in487

each episode (i.e., at the first time step of trial 2;488

Figure 1B) and forced it to perform a pre-defined489

number of rollouts, which we varied. We then quan-490

tified the number of actions that the agent took491

to return to the goal while preventing any further492

rollouts during this return phase (Methods).493

The average number of actions needed to reach494

the goal decreased monotonically as the number495

of forced rollouts increased up to at least 15 roll-496

outs (Figure 3A). Interestingly, this was the case497

despite the unperturbed behavior of the agent rarely498

including more than a few consecutive rollouts (Fig-499

ure 2D), suggesting that the agent learned a robust500

algorithm for policy optimization on the basis of501

such rollouts (Schrittwieser et al., 2020; Hamrick502

et al., 2017). The increase in performance with roll-503

out number was also associated with a concomitant504

decrease in policy entropy (Figure 3B). Thus, per-505

forming more rollouts both improved performance506

and increased the agent’s confidence in its actions507

(Methods). These findings confirm that the agent508

successfully learned to use policy rollouts to opti-509

mize its future behavior. However, the question510

remains of whether this policy improvement is ap-511

propriately balanced with the temporal opportunity512

cost of performing a rollout.513

In general, performing a rollout is beneficial in situ-514

ations where the policy improvement resulting from515

the rollout is greater than the temporal cost of 120516
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Figure 3: Rollouts improve the network policy. (A) Performance on trial 2 as a function of the number
of rollouts enforced at the beginning of the trial. Performance was quantified as the average number of
steps needed to reach the goal in the absence of further rollouts. Gray horizontal line indicates optimal
performance. (B) Policy entropy as a function of the number of rollouts enforced at the beginning of trial 2.
The entropy was computed after re-normalizing the policy over the four ‘physical’ actions, and the horizontal
gray line indicates the entropy of a uniform policy. (C) Original performance of the RL agent (left) and its
performance when re-normalizing the policy over physical actions to prevent any rollouts (right). Performance
was quantified as the average number of rewards collected per episode, and dashed lines indicate individual
RL agents, while the solid line indicates mean and standard error across agents. (D) Schematic showing
an example of a ‘successful’ (dark blue) and an ‘unsuccessful’ (light blue) rollout from the same physical
location (blue circle). Black cross indicates the goal location (not visible to the agent or human participants).
(E) Probability of taking the first simulated action of the rollout, â1, before (πpre(â1)) and after (πpost(â1))
the rollout. This was evaluated separately for successful (left) and unsuccessful (right) rollouts. πpre(â1) was
above chance (gray line) in both cases and increased for successful rollouts, while it decreased for unsuccessful
rollouts. Error bars represent standard error across five independently trained agents. The magnitude of the
change in π(â1) for successful and unsuccessful rollouts depended on the planning horizon (Figure S3).

ms of performing the rollout. To investigate whether517

the agent learned to trade off the cost and benefit518

of rollouts (Hamrick et al., 2017; Pascanu et al.,519

2017; Agrawal et al., 2022), we computed the per-520

formance of the agent in a surrogate environment521

where rollouts were not allowed. In this setting,522

each action was instead sampled from the distribu-523

tion over physical actions only (Methods). When524

preventing rollouts in this way, the agent only col-525

lected 6.54± 0.11 rewards per episode compared to526

7.54±0.03 in the presence of rollouts (mean ± stan-527

dard error across agents), confirming that it used528

rollouts to increase expected reward (Figure 3C).529

To investigate whether the temporal structure of530

rollouts described in Figure 2 was important for531

this performance improvement, we performed an532

additional control, where the number of rollouts was533

kept fixed for each environment, but their occur-534

rence was randomized in time. In this case, perfor-535

mance dropped to 6.75± 0.04 rewards per episode,536

confirming that the RL agent chose to use rollouts537

specifically when they improved performance.538

To further dissect the effect of rollouts on agent539

behavior, we classified each rollout, τ̂ (a sequence540

{â1, â2, . . .} of rolled-out actions), as being either541

‘successful’ if it reached the goal according to the542

agent’s internal world model, or ‘unsuccessful’ if543

it did not (Figure 3D). We hypothesized that the544

policy improvement observed in Figure 3A could545

arise from upregulating the probability of following546

a successful rollout and downregulating the proba-547

bility of following an unsuccessful rollout. To test548

this hypothesis, we enforced a single rollout after549

the agent first found the reward and analyzed the550

effect of this rollout on the policy, separating the551

analysis by successful and unsuccessful rollouts. Im-552

portantly, we could compare the causal effect of553

rollout success by matching the history of the agent554

and performing rejection sampling from the rollout555

process until either a successful or an unsuccessful556

rollout had occurred (Methods). Specifically, we557

asked how the rollout affected the probability of558

taking the first rolled-out action, â1, by comparing559

the value of this probability before (πpre(â1)) and560

after (πpost(â1)) the rollout. πpre(â1) was slightly561

higher for successful rollouts than unsuccessful roll-562

outs, with both types of rollouts exhibiting a sub-563

stantially higher-than-chance probability – a conse-564

quence of the model rollouts being drawn ‘on-policy’565

(Figure 3E). However, while successful rollouts in-566

creased π(â1), unsuccessful rollouts decreased π(â1)567

(Figure 3E). This finding demonstrates that the568

agent combines the spatial information of a rollout569

with knowledge about its consequences, based on570

its internal world model, to guide future behavior.571
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Hippocampal replays resemble policy roll-572

outs573

In our computational model, we designed policy574

rollouts to take the form of spatial trajectories that575

the agent could subsequently follow, and to occur576

only when the agent was stationary. These two577

properties are also important signatures of forward578

hippocampal replays – patterns of neural activity579

observed using electrophysiological recordings from580

rodents during spatial navigation (Pfeiffer and Fos-581

ter, 2013; Widloski and Foster, 2022; Gillespie et al.,582

2021). Our model therefore allowed us to investi-583

gate whether forward replay in biological agents584

serve a similar function during decision making to585

the function of policy rollouts in our RL agent. Ad-586

ditionally, since we have direct access to the agent’s587

policy and how it changes after a replay, our compu-588

tational model can provide insights into the appar-589

ently conflicting data and contradictory viewpoints590

in the literature regarding the role of hippocampal591

replays. In particular, some studies have found a592

significant correlation between forward replay and593

subsequent behavior (Pfeiffer and Foster, 2013; Fos-594

ter, 2017; Widloski and Foster, 2022), arguing that595

such a correlation suggests a role of forward replay596

for planning. On the contrary, other studies have597

found that forward replays do not always resemble598

subsequent behavior (Gillespie et al., 2021; Krause599

and Drugowitsch, 2022; Wu et al., 2017), challeng-600

ing the interpretation of forward replay as a form601

of planning. Our model offers a potentially concil-602

iatory explanation, predicting that the correlation603

between forward replay and subsequent behavior604

can be positive or negative, depending on the re-605

played trajectory (Figure 3E; Jai and Frank, 2015;606

Antonov et al., 2022).607

To investigate whether there is evidence for such608

replay-based modulation of animal behavior, we re-609

analyzed a recently published hippocampal dataset610

from rats navigating a dynamic maze very similar to611

the task in Figure 1B (Widloski and Foster, 2022).612

Our goal was to compare the recorded replay events613

to the policy rollouts exhibited by the RL agent,614

considering both the statistical properties of the re-615

plays themselves and how they relate to subsequent616

behavior. In this rodent experiment, animals had617

to repeatedly return to an initially unknown ‘home’618

location, akin to the goal in our task (Figure S6).619

Both this home location and the configuration of620

the maze changed between sessions. Whilst the621

behaving animals could not be ‘teleported’ between622

trials as in our task, rats instead had to navigate623

to an unknown rewarded ‘away’ location selected624

at random after each ‘home’ trial. These ‘away’625

trials served as a useful control since the animals626

did not know the location of the rewarded well at627

the beginning of the trial.628

We studied replay events detected in hippocam-629

pal recordings made with tetrode drives during the630

maze task (n ∈ [187, 333] simultaneously recorded631

neurons per session; Figure S6C). To detect replays,632

we followed Widloski and Foster (2022) and first633

trained a Bayesian decoder to estimate the animal’s634

position on a discretized grid from the neural data635

during epochs when the animal was moving. We636

then applied this decoder during epochs when the637

animal was stationary at a reward location before638

initiating a new trial and defined replays as consec-639

utive sequences of at least three adjacent decoded640

grid locations (Figure 4A; Figure S6; see Methods641

for details).642

Similar to previous work (Widloski and Foster,643

2022), we found that the hippocampal replays644

avoided passing through walls to a greater extent645

than expected by chance (Figure 4B; p < 0.001,646

permutation test). This finding suggests that hip-647

pocampal replays are shaped by a rapidly updated648

internal model of the environment, similar to how649

forward rollouts in our RL agent are shaped by650

its internal world model (Figure 1A). Additionally,651

the goal location was overrepresented in the hip-652

pocampal replays, consistent with the assumption653

of on-policy rollouts in the RL agent (Figure 4C;654

p < 0.001, permutation test; Widloski and Foster,655

2022).656

Inspired by our findings in the RL agent, we pro-657

ceeded to investigate whether a replayed action was658

more likely to be taken by the animal if the replay659

was successful than if it was unsuccessful. Here, we660

defined a ‘successful’ replay as one which reached661

the goal location without passing through a wall662

(Figure 4A). Consistent with the RL model, we663

found that the first simulated action in the replay664

agreed with the next physical action more often for665

successful replays than for unsuccessful replays (Fig-666

ure 4D, black; p < 0.001, permutation test). Such667

an effect was not observed in the ‘away’ trials (Fig-668

ure 4D, gray; p = 0.129, permutation test), where669

the animals had no knowledge of the reward loca-670

tion and therefore could not know what constituted671

a successful replay. These findings are consistent672

with the hypothesis that successful replays should673

increase the probability of taking the replayed ac-674

tion, while unsuccessful replays should decrease this675

probability.676
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Figure 4: Hippocampal replays resemble model rollouts. (A) Illustration of experimental task
structure and example replays (Widloski and Foster, 2022). Each episode had a different wall configuration
and a randomly sampled home location (cross). Between each ‘home’ trial, the animal had to move to
an ‘away’ location, which was sampled anew on each trial (black circles). Colored lines indicate example
replay trajectories originating at the blue dots. Replays were detected during the stationary periods at
the away locations before returning to the home location and classified according to whether they reached
the home location (dark vs. light blue lines). (B) Fraction of replay transitions that pass through a wall
in the experimental (black) and model (blue) data. Control values indicate the fraction of wall crossings
in re-sampled environments with different wall configurations. Dashed lines indicate individual animals or
RL agents, and solid lines indicate mean and standard error across animals or RL agents. (C) Fraction of
replays that pass through the goal location in experimental (black) and model (blue) data. Control values
indicate the average fraction of replays passing through a randomly sampled non-goal location. Dashed
and solid lines are as in (B). See Figure S7 for an analogous analysis of the away trials, where the goal was
unknown. (D) Probability of taking the first replayed action, p(a1 = â1), for successful and unsuccessful
replays during home trials (left; black), away trials (center; gray), and in the RL agent (right; blue). Bars
and error bars indicate mean and standard error across sessions or RL agents. (E) Over-representation of
successful replays during trials with at least three replays in the experimental data (left) and RL agents (right).
The over-representation increased with replay number; an effect not seen in the away trials (Figure S7).
Over-representation was computed by dividing the success frequency by a reference frequency computed for
randomly sampled alternative goal locations. Error bars indicate standard error across replays pooled from
all animals (left) or standard error across five independently trained agents (right; dashed lines).

In the RL agent, we have direct access to the mo-677

mentary policy and could therefore quantify the678

causal effect of a replay on behavior (Figure 3E).679

However, in the biological circuit, we cannot know680

whether the increased probability of following the681

first action of a successful replay is because the682

replay altered the policy (as in the RL agent), or683

whether the replay reflects a baseline policy that684

was already more likely to reach the goal prior685

to the replay. To circumvent this confound, we686

analyzed consecutive replays while the animal re-687

mained stationary. If our hypotheses hold, that (i)688

hippocampal replays resemble on-policy rollouts of689

an imagined action sequence, and (ii) performing a690

replay improves the policy, then consecutive replays691

should become increasingly successful even in the692

absence of any behavior between the replays.693

To test this prediction, we considered trials where694

the animal performed a sequence of at least 3 re-695

plays at the ‘away’ location before moving to the696

‘home’ location. We then quantified the fraction697

of replays that were successful as a function of the698

replay index within the sequence, after regressing699

out the effect of time (Methods; Ólafsdóttir et al.,700

2017). We expressed this quantity as the degree701

to which the true goal was over-represented in the702

replay events by dividing the fraction of successful703

replays by a baseline calculated from the remaining704
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non-goal locations, such that an over-representation705

of 1 implies that a replay was no more likely to be706

successful than expected by chance. Compellingly,707

this over-representation increased with each consec-708

utive replay during the home trials (Figure 4E; left),709

and both the second and third replays exhibited710

substantially higher over-representation than the711

first replay (p = 0.068 and p = 0.009 respectively;712

permutation test; Methods). Such an effect was not713

seen during the away trials, where the rewarded714

location was not known to the animal (Figure S7).715

These findings are consistent with a theory in which716

replays represent on-policy rollouts that are used717

to iteratively refine the agent’s policy, which in718

turn improves the quality of future replays – a phe-719

nomenon also observed in the RL agent (Figure 4E,720

right). In the RL agent, this effect could arise in721

part because the agent is less likely to perform an722

additional rollout after a successful rollout than723

after an unsuccessful rollout (Figure S8). To elimi-724

nate this confound, we drew two samples from the725

policy each time the agent chose to perform a roll-726

out, and we used one sample to update the hidden727

state of the agent, while the second sample was used728

to compute the goal over-representation (Methods).729

Such decoupling is not feasible in the experimental730

data, since we cannot read out the ‘policy’ of the731

animal. This leaves open the possibility that the732

increase in goal over-representation with consecu-733

tive biological replays is in part due to a reduced734

probability of performing an additional replay after735

a successful replay. However, we note that (i) the736

rodent task was not a ‘reaction time task’, since a737

5-15 s delay was imposed between each trial. This738

makes a causal effect of replay success on the total739

number of replays less likely. (ii) if such an effect740

does exist, that is in itself consistent with a theory741

in which hippocampal replays guide planning.742

RL agents use rollouts to optimize their hid-743

den state744

We have now seen that both biological and artificial745

agents appear to use policy rollouts to influence746

behavior in a way that depends on the content of747

the rollout. However, it remains to be understood748

(i) whether such an algorithm formally increases749

the expected reward, and (ii) how it is implemented750

mechanistically – a question we can address in the751

trained RL agent. In this section, we show that752

our theory has a firm theoretical grounding and753

makes quantitative predictions about the neural754

implementation of planning in PFC. Previously, we755

showed that the agent up- or downregulated the756

probability p(τ = τ̂) of actually performing a rolled-757

out sequence τ̂ depending on the ‘goodness’ of the758

rollout (Figure 3E). This is reminiscent of canonical759

policy-gradient RL algorithms. These algorithms760

consider putative on-policy action sequences τ and761

apply parameter updates that cause p(τ) to increase762

under the agent’s policy if τ led to more reward than763

expected, and to decrease otherwise. In our trained764

agent, adaptation to each new maze does not in-765

volve modifications of the fixed network parameters766

but instead occurs through changes to the hidden767

state hk. We therefore hypothesized that the perfor-768

mance improvements resulting from policy rollouts769

(Figure 3A; Figure 4E) were achieved through iter-770

ative modifications of hk that approximated policy771

gradient ascent on the expected future reward in772

the episode as a function of hk (Figure 5A).773

To test this hypothesis, we considered each rollout774

performed by the RL agent and computed both (i)775

the actual hidden state update performed by the776

RL agent on the basis of this rollout, and (ii) the ex-777

pected hidden state update computed by applying778

the policy gradient algorithm to the same rollout779

(Figure 5B; Methods). Our theory predicts that780

rollouts should change hk in a way that increases781

p(τ = τ̂) if the rollout is better than some baseline782

and decreases p(τ = τ̂) otherwise. Since we do not783

know the baseline, we performed our analysis by784

taking the derivative of the hidden state change785

with respect to the expected reward from physi-786

cally following τ̂ , Rτ̂ , which is independent of the787

baseline (Methods). This allowed us to define (i)788

a quantity αPG := ∂∆hPG

∂Rτ̂
that predicts how the789

hidden state should change as a function of Rτ̂ in790

the policy gradient formulation, and (ii) the corre-791

sponding quantity αRNN := ∂∆hRNN

∂Rτ̂
that indicates792

how the hidden state actually changed as a function793

of the content of the rollout. If the agent performs794

approximate policy gradient ascent in hidden state795

space, αRNN should be aligned with αPG.796

To investigate whether the response of the RNN797

to a rollout was consistent with this theory, we be-798

gan by considering the effect on its hidden state of799

the first action in the rollout, â1. We did this by800

querying the alignment between (i) αRNN computed801

across rollouts from 1,000 episodes, and (ii) αPG
1802

computed from the same rollouts when considering803

only the probability of executing â1. To visualize804

this alignment, we performed PCA on {αPG
1 } from805

all rollouts and projected both αPG
1 and αRNN into806

this low-dimensional subspace. We then computed807

the average of each of these two quantities for each808

simulated action â1 ∈ {left, right,up,down}. We809
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theoretical hidden state update ∆hPG := hPG

2 −h1 to the empirical hidden state update ∆hRNN := hRNN
2 −h1

actually performed by the network dynamics on the basis of a rollout τ̂ and its associated reward Rτ̂ . (C) A
latent space was defined by performing PCA on αPG

1 – the effect of Rτ̂ on hk under the policy gradient
algorithm. Solid lines and circles indicate the normalized average αPG

1 for each of the four possible simulated
actions (â1; colors). Dashed lines indicate the normalized average value of αRNN for the corresponding action,
which is aligned with αPG

1 in accordance with the theory. The first 3 PCs capture 100% of the variance in
αPG

1 , since the policy is normalized and therefore only has three degrees of freedom. (D) Average cosine
similarity between αRNN and αPG

1 , quantified in the space spanned by the top 3 PCs of αPG
1 (see text for

details). αRNN was computed using the true input, while αRNN
ctrl was computed after altering the feedback

from the rollout to falsely inform the agent that it had simulated a different action â1,ctrl ≠ â1. This confirms
that the observed alignment is mediated by the input from the rollout. Left panel considers the effect of Rτ̂

on the first action (αPG
1 ) and right panel considers the effect of Rτ̂ on the second action (αPG

2 ). (E) We
trained networks of different sizes (legend) and quantified both their performance (x-axis) and frequency of
performing a rollout (y-axis) over the course of training (Figure S9). To reach a given performance, we found
that smaller networks relied more on rollouts, suggesting that the RL agents learn to plan in part because
they are capacity limited. Additionally, the agents learned to rely less on rollouts late in training as they
became increasingly good at the task, suggesting that they also plan because they are data limited.

found that the average value of αRNN was strongly810

aligned with the average value of αPG
1 for each811

action (Figure 5C), consistent with the theory out-812

lined above. Importantly this means that Rτ̂ has813

different effects on the policy depending on the re-814

played trajectory τ̂ . In other words, the spatial815

content of the rollout dynamically modulates the816

way in which the reward signal from the rollout817

affects the hidden state and policy of the agent.818

To quantify the overlap between αRNN and αPG
1 on819

a rollout-by-rollout basis, we computed the average820

cosine similarity d between αRNN and αPG
1 across821

all rollouts. This overlap was substantially larger822

than zero (d = 0.39± 0.01 mean ± sem; Figure 5D,823

left). When instead computing the overlap with824

αRNN
ctrl computed after changing the feedback input825

to falsely inform the agent that it simulated a dif-826

ferent action â1,ctrl ̸= â1, the corresponding value827

was d = −0.11 ± 0.004. This confirms that hk is828

optimized by incorporating the specific feedback829

input obtained from the rollout, and the negative830

sign reflects anti-correlations due to the policy being831

a normalized distribution over actions. For these832

analyses, we only considered the first simulated ac-833

tion â1. When instead querying the effect of the834

rollout on subsequent actions in τ̂ , we found that835

the feedback input was also propagated through the836

network dynamics to these later actions (Figure 5D,837

right). These analyses confirm that policy rollouts838

consistently move the hidden state of the agent in839

the direction of the policy gradient.840
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Discussion841

We have developed a new theory of planning in the842

prefrontal-hippocampal network, implemented as a843

recurrent neural network model and instantiated in844

a spatial navigation task requiring multi-step plan-845

ning (Figure 1). Our model consists of a recurrent846

meta-reinforcement learning agent augmented with847

the explicit ability to plan using policy rollouts.848

We showed that this model provides a compelling849

account of human behavior in our task, where it850

explains the structure observed in human think-851

ing times (Figure 2). These results suggest that852

planning using mental rollouts could constitute a853

major component underlying the striking human854

ability to adapt rapidly to new information and855

changing environments, where it allows agents to856

refine their behavior without incurring the poten-857

tially large cost of overtly executing suboptimal858

actions. Since mental simulation is generally faster859

and more efficient than physically interacting with860

the world (Vul et al., 2014), this allows agents to861

improve their overall performance despite the tem-862

poral opportunity cost of such simulation (Figure 3;863

Agrawal et al., 2022; Hamrick et al., 2017).864

Our theory also suggests an important role of hip-865

pocampal replays during sequential decision making.866

By re-analyzing recordings from the rat hippocam-867

pus during a navigation task, we found that patterns868

of hippocampal replays and their relationship to869

behavior resembled the rollouts used by our model870

(Figure 4). These results suggest that hippocam-871

pal forward replays could be a manifestation of872

a planning process, and that the mechanistic in-873

sights derived from our model could generalize to874

biological circuits. In particular, we hypothesize875

that forward replays should have different effects876

on subsequent behavior depending on whether they877

lead to high-value or low-value states (Figure 3; Wu878

et al., 2017). This hypothesis is consistent with879

previous models, where hippocampal replay is used880

to update state-action values that shape future be-881

havior (Mattar and Daw, 2018). We suggest that882

forward replay implements planning through feed-883

back to prefrontal cortex that drives a ‘hidden state884

optimization’ reminiscent of recent models of motor885

preparation (Figure 5; Kao et al., 2021). This differs886

from prior work in the reinforcement learning liter-887

ature, since our model does not involve arbitration888

between model-free and model-based policies com-889

puted separately (Daw et al., 2005; Geerts et al.,890

2020). Instead, model-based computations itera-891

tively update a single policy that can be used for892

decision making at different stages of refinement.893

Neural mechanisms of planning and decision894

making895

Our model raises several interesting hypotheses896

about neural dynamics in hippocampus and pre-897

frontal cortex and how these dynamics affect be-898

havior. One is that hippocampal replays should899

causally affect the behavior of an animal as also900

suggested in previous work (Foster, 2017; Pfeiffer901

and Foster, 2013; Widloski and Foster, 2022). How-902

ever, as noted previously (Figure 4), this has been903

notoriously difficult to test in experiments due to904

the confound of how the behavioral intentions of905

the animal itself affect the content of hippocampal906

replays (Foster, 2017). Perhaps more interestingly,907

we predict that hippocampal forward replays should908

directly drive a change in PFC representations, con-909

sistent with previous work showing coordinated ac-910

tivity between hippocampus and PFC during sharp-911

wave ripples (Jadhav et al., 2016). Crucially, we912

also predict how PFC representations should change913

during planning depending on the spatial content914

and expected reward of a replay. These predictions915

could be investigated in experiments that record916

neural activity simultaneously from hippocampus917

and PFC, where both the timing and qualitative918

change in PFC representations can be related to919

the occurrence of replays in hippocampus.920

To enable more detailed mechanistic predictions,921

our model could be extended in several ways. First,922

we have modeled the prefrontal network as a single923

fully connected network. In contrast, the brain re-924

lies on several connected but distinct circuits, all of925

which serve specialized functions that together give926

rise to the representations and dynamics driving927

human behavior. To understand these collective928

dynamics, it will therefore be interesting to extend929

our approach to modular models inspired by the930

architecture of multi-area networks. Second, our931

implementation of rollouts in the agent took the932

form of an abstract simulation process, where the933

underlying neural dynamics were not explicitly mod-934

eled. To better understand the mechanisms through935

which PFC interacts with other brain areas during936

planning, it will be important to model the whole937

rollout process as multi-area neural dynamics. Fi-938

nally, while we propose a role of hippocampal re-939

plays in shaping immediate behavior via recurrent940

network dynamics, this is compatible with replays941

also having other functions, such as memory consol-942

idation (van de Ven et al., 2016; Carr et al., 2011)943

or dopamine-driven synaptic plasticity over longer944

timescales (Gomperts et al., 2015; De Lavilléon945

et al., 2015).946
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Alternative planning algorithms947

Planning in the RL agent was carried out explicitly948

in the space of observations. While this was already949

an abstract representation rather than pixel-level950

input, it could be interesting to explore planning951

in a latent space optimized e.g. to predict future952

observations (Zintgraf et al., 2019) or future policies953

and value functions (Ho et al., 2022; Schrittwieser954

et al., 2020). These ideas have proven useful in the955

machine learning literature, where they allow mod-956

els to ignore details of the environment not needed957

to make good decisions, and it is plausible that the958

internal model of humans similarly does not include959

such task-irrelevant details. We also assumed that960

the planning process itself was ‘on policy’ – that is,961

the policy that was used to sample actions in the962

planning loop was identical to the policy used to963

act in the world. Although there is some support964

from the hippocampal replay data that forward re-965

plays are related to the ‘policy’ (e.g. wall avoidance966

and goal over-representation; Figure 4), there is in967

theory nothing that prevents the planning policy968

from differing arbitrarily from the action policy. In969

fact, the planning policy could even be explicitly970

optimized to yield good plans rather than re-using971

a policy optimized to yield good behavior (Pascanu972

et al., 2017). Such off-policy hippocampal sequence973

generation has also formed the basis of other recent974

theories of the role of hippocampus in planning and975

decision making (McNamee et al., 2021; Mattar976

and Daw, 2018). In this case, the policy gradient977

view of rollouts still provides a natural language for978

formalizing the planning process, since numerous979

off-policy extensions of the canonical policy gradi-980

ent algorithm exist (Peshkin and Shelton, 2002; Jie981

and Abbeel, 2010).982

Why do we spend time thinking?983

Finally, while both humans and our RL agents made984

extensive use of planning, it is worth noting that985

mental simulation does not generate any new in-986

formation about the world. In theory, it should987

therefore be possible to make equally good ‘reflex-988

ive’ decisions given enough computational power.989

This raises the question of why we rely on planning990

in the first place – in other words, what is the reason991

that decision making often takes time rather than992

being instantaneous? One possible reason could be993

that our decision making system is capacity limited,994

such that it does not have enough computational995

power to generate the optimal policy (Russek et al.,996

2022). In our computational model, this is sup-997

ported by the observation that agents consisting of998

smaller RNNs tend to perform more rollouts than999

larger agents (Figure 5E). Alternatively, we could1000

be data limited, meaning that we have not received1001

enough training to learn the optimal policy. This1002

also has support in our computational model, where1003

networks of all sizes perform many rollouts early in1004

training, when they have only seen a small amount1005

of data, and gradually transition to a more reflex-1006

ive policy that relies less on rollouts (Figure 5E;1007

Figure S9).1008

We hypothesize that data limitations are a major1009

reason for the use of temporally extended planning1010

in animals. In particular, we reason that learning1011

the instantaneous mapping from states to actions1012

needed for reflexive decisions would require a pro-1013

hibitive amount of training data, which is generally1014

not available for real-life scenarios. Indeed, training1015

our meta-reinforcement learner required millions of1016

episodes, while humans were immediately capable1017

of solving the maze task from only a simple task1018

description and demonstration. Such rapid learning1019

could be due in part to the use of temporally ex-1020

tended planning algorithms as a form of ‘canonical1021

computation’ that generalizes across tasks. If this1022

is the case, we would be able to rely on generic1023

planning algorithms acquired over the course of1024

many previous tasks in order to solve a new task.1025

When combined with a new task-specific transition1026

function learned from relatively little experience1027

or inferred from sensory inputs, planning would1028

facilitate data-efficient reinforcement learning by1029

allowing the agent to trade off processing time for1030

a better policy (Schrittwieser et al., 2020). This1031

is in contrast to our current model, which had to1032

learn from scratch both the structure of the environ-1033

ment and how to use rollouts to shape its behavior.1034

Importantly, planning as a canonical computation1035

could generalize not just to other navigation tasks1036

but also to other domains, such as compositional1037

reasoning and sequence learning, where replay has1038

recently been demonstrated in humans (Liu et al.,1039

2019; Schwartenbeck et al., 2021; Liu et al., 2021).1040

Further exploring these ideas will be an exciting1041

avenue for future work.1042
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Figure S1: Overview of human data for all participants. (A) Mean reward per trial as a function
of the average response time during the guided trials (Methods). Each data point corresponds to a single
participant. (B) Mean reward per trial as a function of the average response time during the non-guided trials.
The strong negative correlation implies that participants on average got more reward when they acted faster,
confirming that participants who acted faster were not simply making random key presses. (C) Fraction
of actions that were consistent with an optimal policy as a function of mean response time, plotted for all
participants during the non-guided trials. There was a significant positive Pearson correlation between these
two quantities (r = 0.41; p < 0.0001, permutation test). This correlation confirms that participants who
thought for longer were not simply disengaged with the task, but that they instead invested the time to make
higher-quality decisions. (D) Mean of the log-normal distribution of perception-action delays fitted to data
from the guided episodes for each participant (dots) using either the first action within each trial (left) or all
other actions (right). These prior distributions were used to infer the thinking times in Figure 2.
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Figure S2: Thinking time and π(rollout) by distance to goal and step within trial. (A) Figure
illustrating the average thinking time across human participants as a function of distance to goal (x-axis),
conditioned on different steps within the trial (lines, legend). Subjects generally spent longer thinking before
the first action of each trial, after controlling for the distance to goal, while subsequent actions were associated
with similar thinking times. Lines and shadings indicate mean and standard error when repeating the analysis
across human participants (n = 94). (B) π(rollout) for the agent clamped to the human trajectory as a
function of distance to goal and for different steps within the trial. Similar to the human participants, the
agent had a higher probability of performing a rollout on the first step of each trial. Subsequent steps were
associated with similar rollout probabilities after controlling for the distance to goal. When conditioning on
both distance to goal and step within trial, the residual correlation between π(rollout) and thinking time
remained at a significantly positive value of r = 0.026± 0.004 (mean ± sem).
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Figure S3: Properties of networks with different hyperparameters. To investigate the robustness
of our results to the choice of network size (N) and planning horizon (L), we trained networks with each
combination of N ∈ {60, 100, 140} and L ∈ {4, 8, 12} and repeated some of our key analyses. For all analyses,
we report mean and standard error across 5 networks with each set of hyperparameters. The results in the
main text are all reported for a network with N = 100 and L = 8. (A) We quantified the correlation between
the network π(rollout) and human response times across different networks (c.f. Figure 2F). x-ticks indicate
network size and planning horizon as (N , L). (B) We computed the improvement in the network policy
from performing 5 rollouts compared to the policy in the absence of rollouts (c.f. Figure 3A). The policy
improvement was quantified as the average number of steps needed to reach the goal on trial 2 in the absence
of rollouts, minus the average number of steps needed with 5 rollouts enforced at the beginning of the trial
and no rollouts during the rest of the trial. Positive values indicate that rollouts improved the policy. (C) We
investigated how rollouts changed the policy (c.f. Figure 3E). For each network, we computed the average
change in π(â1) from before a rollout to after a rollout and report this change separately for successful (‘succ’)
and unsuccessful (‘un’) rollouts. Positive values indicate that â1 became more likely and negative values
that â1 became less likely after the rollout. We observe that networks with longer planning horizons tend to
have less positive ∆π(â1) for successful rollouts and more negative ∆π(â1) for unsuccessful rollouts. This is
consistent with a policy gradient-like algorithm with a baseline that approximates the probability of success,
which increases with planning horizon. In other words, since longer rollouts are more likely to reach the goal,
we should expect them to be successful and not strongly update our policy when it occurs. On the contrary,
an unsuccessful rollout is less likely and should lead to a large policy change. The converse is true for shorter
planning horizons.
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Figure S4: Accuracy of the internal world model. (A) Accuracy of the internal transition model over
the course of training. Accuracy was computed as the probability that the predicted next state was the true
state reached by the agent, ignoring all teleportation steps where the transition cannot be predicted. The
accuracy was averaged across all timesteps from 1,000 episodes, and the line and shading indicate mean and
standard error across 5 RL agents. The upper panel considers the full range of [0, 1] while the lower panel
considers the range [0.99, 1.0]. We see that the transition model rapidly approaches ceiling performance,
although it continues to improve slightly throughout training. (B) Accuracy of the internal reward model
over the course of training. Accuracy was computed as the probability that the predicted reward location was
the true reward location during the exploitation phase of the task (see Figure S5 for an analysis of the model
accuracy during exploration). Lines and shadings indicate mean and standard error across 5 RL agents.
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Figure S5: Analyses of the exploration period in humans and RL agents. (A) At each point in time,
the agent outputs its belief over where the goal is located under its internal model, which was trained using a
cross-entropy loss (Methods). The figure shows the average probability assigned to the true goal, plotted as a
function of the number of unique states visited during the exploration phase of the task. As more states
are explored, the posterior over possible goals becomes narrower and prediction accuracy increases. When
the model chooses to perform a rollout, the imagined goal is chosen as the maximum likelihood location
from this posterior to predict the ‘success’ of the rollout. The figure illustrates that this imagined goal
becomes increasingly likely to be the true goal as the agent explores more of the environment. (B) Thinking
time of human participants during exploration, plotted as a function of π(rollout) for RL agents clamped to
the human trajectory. Bars and error bars indicate mean and standard error of the human thinking time
across all states where π(rollout) fell in the corresponding bin. Gray line indicates a control where human
thinking times have been shuffled. The Pearson correlation between π(rollout) and human thinking times
is r = 0.097 ± 0.008, suggesting that the model captures some of the structure in human thinking during
exploration and not just during the exploitation phase. Note that the very first action of the episode was not
included in this or subsequent analyses of the human data. (C) Model thinking time as a function of the
number of unique states visited during the exploration phase of the task, with each rollout assumed to take
120 ms as specified in the main text and Methods. Line and shading indicate mean and standard error across
RL agents. The increase in thinking time with visited states mirrors the predictive performance from panel
(A) and suggests that the agent increasingly chooses to engage in ‘model-based’ planning as its uncertainty
over possible goal locations decreases. (D) Human thinking time as a function of the number of unique states
visited during the exploration phase of the task. Line and shading indicate mean and standard error across
participants. The increase in thinking time with states visited suggests that humans may also transition
to more model based behavior as the posterior over possible goal locations becomes narrower. A notable
difference from the computational model is found early in the exploration phase, where human thinking times
tend to decrease slightly over the first few unique state visits.
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Figure S6: Overview of rodent data. (A) Kernel density estimate (σ = 3 trials) of the distribution of the
number of ‘home’ trials in each session across all animals (an equivalent number of away trials was performed
between the home trials). Dots indicate individual sessions. (B) Fraction of trials where the animal reached
the correct goal location and started licking within 5 seconds of the trial starting, separated by home and
away trials. Reaching the goal within 5 seconds was used as a success criterion by Widloski and Foster (2022)
since the goal is never explicitly cued at this time (Methods). Line and shading indicate mean and standard
error across sessions. The animals learn the location of the home well within a few trials and consistently
return to this location on the home trials. (C) Distribution of the number of recorded neurons in each session.
Line indicates a convolution with a Gaussian filter (15 neuron std) and dots indicate individual sessions. Note
that consecutive sessions on the same day (2-3 sessions per day) involved recording from the same neurons,
so there are fewer distinct data points than there are sessions. (D) Consistency of spatial tuning curves of
hippocampal neurons. Consistency was quantified by constructing two tuning curves on the 5x5 spatial grid
(Figure 4A) for each neuron and computing the Pearson correlation between the two tuning curves. The data
was split into either even/odd time bins in a session (left plot) or first/second half of the session (right plot)
to compute a pair of tuning curves. (E) Distribution of replay lengths, measured as the number of states
visited in a replay, for all replays during home (left) or away (right) trials. Note the log scale on the y-axis.
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Figure S7: Analysis of replays during away trials. (A) Fraction of replays reaching either the true
goal (left) or a randomly sampled alternative goal location (right) during away trials. In contrast to the
home trials (Figure 4C), the goal is not over-represented during away trials, where the goal location is
unknown. (B) Over-representation of replay success as a function of replay number within sequences of
replays containing at least 3 distinct replay events (c.f. Figure 4E). In contrast to the home trials, there is no
increase in over-representation with replay number during these away trials.
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Figure S8: Change in π(rollout) for successful and unsuccessful rollouts. (A) π(rollout) before
(left) and after (right) successful rollouts. Bars and error bars indicate mean and standard error across
5 RL agents. The data used for this analysis was the same data used in Figure 3E. (B) As in (A), now
for unsuccessful rollouts. πpost(rollout) was substantially larger after unsuccessful than successful rollouts
(∆π(rollout) = 0.10± 0.01 mean ± sem).
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Figure S9: Performance and rollouts as a function of network size. (A) We trained networks
of different sizes (legend; N ∈ [60, 80, 100]) and quantified their performance over the course of training.
(B) Fraction of timesteps where the agent chose to perform a rollout over the course of training for different
network sizes. Note that the agents perform rollouts at chance level but with high variance at initialization,
and this data point was therefore not included in the analysis in Figure 5E, where we only considered the
learned rollout frequency from episode 800,000 onwards. It is interesting to note that the agents first learn to
suppress the rollout frequency below chance before increasing it to levels above chance. This is consistent
with a theory where rollouts only become useful when (i) an internal world model has been learned, and (ii)
the agent has learned how to use rollouts to improve its policy. Finally, rollouts become less frequent again
later in training as the base policy improves.
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Methods1312

Software1313

All models were trained in Julia version 1.7 using Flux and Zygote for automatic differentiation (Innes et al.,1314

2018). Human behavioral experiments were written in OCaml, with the front-end transpiled to javascript for1315

running in the participants’ browsers. All analyses of the models and human data were performed in Julia1316

version 1.8. All analyses of hippocampal replay data were performed in Python 3.8.1317

Statistics1318

Unless otherwise stated, all plots are reported as mean and standard error across human participants (n = 94),1319

independently trained RL agents (n = 5), or experimental sessions in rodents (n = 37).1320

Environment1321

We generated mazes using the following algorithm:1322

Algorithm 1: Maze generating algorithm
1 A ← 4x4 arena with walls everywhere.
2 V ← {} % empty initial set of visited states.
3 s← random starting location.
4
5 % Define function to walk through the maze and remove walls
6 Function walk_maze(s, A, V)
7 V.add(s) % Add s to set of visited states
8 N ← neighbors(s) % Neighbors of s, including those through the periodic boundaries
9 % Iterate through all neighboring states in random order

10 for n ∈ randomize(N ) do
11 % If we reached a state we have not seen before
12 if n /∈ V then
13 A.remove_wall(s, n) % Remove wall between s and n from arena
14 A, V = walk_maze(n, A, V) % Continue from new state

15 return A, V
16
17 A, V = walk_maze(s, A, V) % Construct maze using our recursive algorithm
18
19 %Remove 3 additional walls at random to increase the degeneracy of the tasks.
20 %This increases the number of decision points with multiple routes to the goal.
21 for i = 1:3 do
22 w = random_wall(A) % Select one of the remaining walls at random
23 A.remove_wall(w) % Remove from set of walls
24
25 return A % Return the maze we constructed

For each environment, a goal location was sampled uniformly at random. When subjects took an action1323

leading to the goal, they transitioned to this location before being teleported to a random location. In the1324

computational model, this was achieved by feeding the agent an input at this location before teleporting the1325

agent to the new location. The policy of the agent at this iteration of the network dynamics was ignored,1326

since the agent was teleported rather than taking an action.1327
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Reinforcement learning model1328

We trained our agent to maximize the expected reward, with the expectation taken both over environments
E and the agent’s policy π:

U = EE [J(θ)] (5)

= EE

[
Eπ

(
K∑

k=1
rk

)]
. (6)

Here, U is the utility function, k indicates the iteration within an episode, and rk indicates the instantaneous
reward at each iteration. We additionally introduced the following auxiliary losses:

LV = 0.5(Vk −Rk)2 value function (7)
LH = Eπ log π entropy regularization (8)

LP = −
∑

i

[
s

(i)
k+1 log ŝ(i)

k+1 + g(i) log ĝ(i)
k

]
internal world model. (9)

Here, ĝk, and ŝk+1 are additional network outputs representing the agent’s estimate of the current reward1329

location and upcoming state. g and sk+1 are the corresponding ground truth quantities, represented as1330

one-hot vectors. Rk :=
∑K

k′=k rk′ is the empirical cumulative future reward from iteration k onwards, and Vk1331

is the value function of the agent.1332

To maximize the utility and minimize the losses, we trained the RL agent on-policy using a policy gradient1333

algorithm with a baseline (Sutton and Barto, 2018) and parameter updates of the form1334

∆θ ∝
∑

ak∼π

[
(∇θ log πk(ak)︸ ︷︷ ︸

actor

+βv∇θVk︸ ︷︷ ︸
critic

)δk − βe∇θ

∑
a

πk,a log πk,a︸ ︷︷ ︸
entropy

+ βp∆θp︸ ︷︷ ︸
predictive

]
(10)

Here, δk := −Vk +Rk is the ‘advantage function’, and ∆θp = ∇θLP is the derivative of the predictive loss1335

LP , which was used to train the ‘internal model’ of the agent. βp = 0.5, βv = 0.05 and βe = 0.05 are1336

hyperparameters controlling the importance of the three auxiliary losses. While we use the predictive model1337

explicitly in the planning loop, similar auxiliary losses are also commonly used to speed up training by1338

encouraging the learning of useful representations (Jaderberg et al., 2016).1339

Our model consisted of a GRU network with 100 hidden units (Cho et al., 2014). The policy was computed as1340

a linear function of the hidden state followed by a softmax normalization. The value function was computed1341

as a linear function of the hidden state. The predictions of the next state and reward location were computed1342

with a neural network that received as input a concatenation of the current hidden state hk and the action1343

ak sampled from the policy (as a one-hot representation). The output layer of this feedforward network1344

was split into a part that encoded a distribution over the predicted next state (a vector of 16 grid locations1345

with softmax normalization), and a part that encoded the predicted reward location in the same way. This1346

network had a single hidden layer with 33 units and a ReLU nonlinearity.1347

The model was trained using ADAM (Kingma and Ba, 2015) on 200,000 batches, each consisting of 401348

episodes, for a total of 8× 106 training episodes. These episodes were sampled independently from a total1349

task space of (273± 13)× 106 tasks (mean ± standard error). The total task space was estimated by sampling1350

50,000 wall configurations and computing the fraction of the resulting 1.25× 109 pairwise comparisons that1351

were identical, divided by 16 to account for the possible reward locations. This process was repeated 101352

times to estimate a mean and confidence interval. These considerations suggest that the task coverage during1353

training was ≈ 2.9%, which confirms that the majority of tasks seen at test time are novel (although we do1354

not enforce this explicitly).1355

For all evaluations of the model, actions were sampled greedily rather than on-policy unless otherwise stated.1356

This was done since the primary motivation for using a stochastic policy is to explore the space of policies to1357

improve learning, and performance was better under the greedy policy at test time.1358
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Planning1359

Our implementation of ‘planning’ in the form of policy rollouts is described in Algorithm 2. This routine was1360

invoked whenever a ‘rollout’ was sampled from the policy instead of a physical action.1361

Algorithm 2: Planning routine for the RL agent
1 input: maximum planning depth (nmax), current hidden state (hk), and agent location (sk)
2 parameters: network parameters θ, defining ϕ(·), ζ(·), p(ĝ|hk), and p(ŝ|a,h)
3
4 g̃ ← argmax p(ĝ|hk) % predicted goal location
5 h̃k, π̃k, s̃k ← hk, πk, sk % simulated hidden state, policy, and agent location, initialized to true values
6 n← 0 % planning iteration
7
8 while n < nmax and s̃k+n ̸= g̃ do
9 ãk+n ∼ π̃k+n[{a}no_plan] % imagined action sampled on-policy but from physical actions only

10 s̃k+n+1 ← argmax p(ŝk+n+1|ãk+n, h̃k+n) % predicted next state from current imagined state and
action

11 x̃k+n+1 ← O(s̃k+n+1, g̃) % expected observations on next iteration (assuming access to the
function O(·))

12 h̃k+n+1 ← ϕ(x̃k+n+1, h̃k+n) % simulate agent dynamics
13 π̃k+n+1 = ζ(h̃k+n+1) % generate new policy
14 n← n+ 1 % update planning iteration
15
16 % return action sequence and whether the rollout reached the expected goal
17 return: {ãk′}k+n

k , δ(s̃k+n, g̃)

For the network update following a rollout, the input xk+1 was augmented with an additional ‘rollout input’1362

consisting of (i) the sequence of simulated actions, each as a 1-hot vector, and (ii) a binary input indicating1363

whether the imagined sequence of states reached the imagined goal location. Additionally, the time within1364

the session was only updated by 120 ms after a rollout in contrast to the 400 ms update after a physical1365

action or teleportation step.1366

Note that while both an imagined ‘physical state’ s̃k and ‘hidden state’ h̃k are updated during the rollout, the1367

agent continues from the original location sk and hidden state hk after the rollout, but with an augmented1368

input. Additionally, gradients were not propagated through the rollout process, which was considered part1369

of the ‘environment’. This means that there was no explicit gradient signal that encouraged the policy to1370

drive useful or informative rollouts. Instead, the rollout process simply relied on the utility of the base policy1371

optimized for acting in the environment.1372

Performance by number of rollouts1373

To quantify the performance as a function of the number of planning steps in the RL agent (Figure 3A), we1374

simulated each agent in 1,000 different mazes until it first found the goal and was teleported to a random1375

location. We then proceeded to enforce a particular number of rollouts before the agent was released in trial1376

2. During this release phase, no more rollouts were allowed – in other words, the policy was re-normalized1377

over the physical actions, and the probability of performing a rollout was set to zero. Performance was then1378

quantified as the average number of steps needed to reach the goal during this test phase. The optimal1379

reference value was computed as the average optimal path length for the corresponding starting states. When1380

performing more than one sequential rollout prior to taking an action, the policy of the agent can continue to1381

change through two potential mechanisms. The first is that the agent can explicitly ‘remember’ the action1382

sequences from multiple rollouts and somehow arbitrate between them. The second is to progressively update1383

the hidden state in a way that leads to a better expected policy with each rollout, since the feedback from1384

a rollout is incorporated into the hidden state that induces the policy used to draw the next rollout. On1385

the basis of the analysis in Figure 5, we expect the second mechanism to be dominant, although we did not1386
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explicitly test the ability of the agent to ‘remember’ multiple action sequences from sequential rollouts. For1387

this and all other RNN analyses, the agent executed the most likely action under the policy during ‘testing’1388

in contrast to the sampling performed during training, where such stochasticity is necessary for exploring the1389

space of possible actions. All results were qualitatively similar if actions were sampled during the test phase,1390

although average performance was slightly worse.1391

Performance in the absence of rollouts and with shuffled rollout times1392

To quantify the performance of the RL agent in the absence of rollouts, we let the agent receive inputs1393

and produce outputs as normal. However, we set the probability of performing a rollout under the policy1394

to zero and re-normalized the policy over the physical actions before choosing an action from the policy.1395

We compared the average performance of the agent (number of rewards collected) in this setting to the1396

performance of the default agent in the same environments.1397

To compare the original performance to an agent with randomized rollout times, we counted the number1398

of rollouts performed by the default agent in each environment. We then re-sampled a new set of network1399

iterations at which to perform rollouts, matching the size of this new set to the original number of rollouts1400

performed in the corresponding environment. Finally, we let the agent interact with the environment again,1401

while enforcing a rollout on these network iterations, and preventing rollouts at all other timesteps. It is1402

worth noting that we could not predict a priori the iterations on which the agent would find the goal, at1403

which point rollouts were not possible. If a rollout had been sampled at such an iteration, we re-sampled this1404

rollout from the set of remaining network iterations.1405

Rollouts by network size1406

To investigate how the frequency of rollouts depended on network size (Figure 5E; Figure S9), we trained1407

networks with either 60, 80, or 100 hidden units (GRUs). Five networks were trained with each size. At1408

regular intervals during training, we tested the networks on a series of 5,000 mazes and computed (i) the1409

average reward per episode, and (ii) the fraction of actions that were rollouts rather than physical actions.1410

We then plotted the rollout fraction as a function of average reward to see how frequently an agent of a given1411

size performed rollouts for a particular performance.1412

Effect of rollouts on agent policy1413

To quantify the effect of rollouts on the policy of the agent, we simulated each agent in 1,000 different mazes1414

until it first found the goal and was teleported to a random location. We then resampled rollouts until both1415

(i) a successful rollout and (ii) an unsuccessful rollout had been sampled. Finally, we quantified πpre(â1)1416

and πpost(â1) separately for the two scenarios and plotted the results in Figure 3E. Importantly, this means1417

that each data point in the ‘successful’ analysis had a corresponding data point in the ‘unsuccessful’ analysis1418

with the exact same maze, location, and hidden state. In this way, we could query the effect of rollouts on1419

the policy without the confound of how the policy itself affects the rollouts. For this analysis, we discarded1420

episodes where the first 100 sampled rollouts did not result in both a successful and an unsuccessful rollout.1421

For Figure S8, we used the same episodes and instead quantified π(rollout) before and after the rollout,1422

repeating the analysis for both successful and unsusccessful rollouts.1423

Overlap between hidden state updates and policy gradients1424

Using a single rollout (τ̂) to approximate the expectation over trajectories of the gradient of the expected future1425

reward for a given episode,∇hJfut(h), the policy gradient update in h takes the form ∆h ∝ (Rτ̂−b)∇h log p(τ̂).1426

Here, ∆h is the change in hidden state resulting from the rollout, Rτ̂ is the ‘reward’ of the simulated trajectory,1427

b is a constant or state-dependent baseline, and ∇h log p(τ̂) is the gradient with respect to the hidden state1428

of the log probability of τ̂ under the policy induced by h. This implies that the derivative of the hidden state1429

update w.r.t. Rτ̂ , αRNN := ∂∆h
∂Rτ̂

, should be proportional to αPG := ∇h log p(τ̂).1430

For these analyses, we divided τ̂ into its constituent actions, defining αPG
k := ∇h log p(âk|â1:k−1) as the1431

derivative w.r.t. the hidden state of the log probability of taking the simulated action at step k, conditioned1432

on the actions at all preceding steps (1 to k − 1) being consistent with the rollout. To compute αRNN,1433

we also needed to take derivatives w.r.t. Rτ̂ – the ‘reward’ of a rollout. A naive choice here would be to1434

simply consider Rτ̂ to be the input specifying whether the rollout reached the reward or not. However,1435
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we hypothesized that the agent would also use information about e.g. how long the simulated trajectory1436

was in its estimate of the ‘goodness’ of a rollout (since a shorter rollout implies that the goal was found1437

faster). We therefore determined the direction in planning input state space that was most predictive of the1438

time-to-goal of the agent. We did this by using linear regression to predict the (negative) time-to-next-reward1439

as a function of the planning feedback xf across episodes and rollouts. This defines the (normalized) direction1440

ν̂ in planning input space that maximally increases the expected future reward. Finally, we defined Rτ̂ as1441

the magnitude of the planning input in direction ν̂, Rτ̂ := xf · ν̂. We could then compute αRNN with this1442

definition of Rτ̂ using automatic differentiation.1443

In Figure 5C, we computed αRNN and αPG
1 across 1,000 episodes. We then performed PCA on the set of1444

αPG
1 and projected both αRNN and αPG

1 into the space spanned by the top 3 PCs. Finally, we computed the1445

mean value of both quantities conditioned on â1 to visualize the alignment. In Figure 5D, we considered the1446

same αRNN and αPG
1 vectors, now computing the cosine similarity between each pair of vectors before taking1447

an average. This cosine similarity was still computed in the space spanned by the top 3 PCs since we were1448

primarily interested in changes in h within the subspace that would affect log p(τ̂). As a control, we repeated1449

the analysis after altering the planning input xf to falsely inform the agent that it had simulated some other1450

action â1,ctrl ̸= â1. Finally, we also repeated this analysis using αPG
2 to characterize how the effects of the1451

planning input propagated through the recurrent network dynamics to modulate future action probabilities.1452

Human data collection1453

The human behavioral experiment used in this study has been certified as exempt from IRB review by the1454

UC San Diego Human Research Protection Program. We collected data from 100 human participants (501455

male, 50 female) recruited on Prolific to perform the task described in Figure 1B. Subjects were asked to1456

complete (i) 6 ‘guided’ episodes where the optimal path was shown explicitly, followed by (ii) 40 non-guided1457

episodes, and (iii) 12 guided episodes. The task can be found online. During data collection, a subject was1458

deemed ‘disengaged’, and the trial repeated, if one of three conditions were met: (i) the same key was pressed1459

5 times in a row, (ii) the same key pair was pressed four times in a row, or (iii) no key was pressed for 71460

seconds. Participants were paid a fixed rate of $3 plus a performance-dependent bonus of $0.002 for each1461

completed trial across both guided and non-guided episodes. The experiment took approximately 22 minutes1462

to complete, and the average pay across participants was $10.5 per hour including the performance bonus.1463

The data from 6 participants with a mean response time greater than > 690 ms during the guided episodes1464

were excluded to avoid including participants who were not sufficiently engaged with the task. For the guided1465

episodes, only the last 10 episodes were used for further analyses. For the non-guided episodes, we discarded1466

the first two episodes and used the last 38 episodes. This was done to give participants two episodes to1467

get used to the task for each of the two conditions, and the first set of guided episodes was intended as an1468

instruction in how to perform the task.1469

Performance as a function of trial number1470

We considered all episodes where the humans or RL agents completed at least four trials, evaluating the RL1471

agents across 50,000 episodes. We then computed the average across these episodes of the number of steps to1472

goal as a function of trial number separately for all subjects. Figure 2A illustrates the mean and standard1473

error across subjects (human participants or RL agents). The optimal value during the exploitation phase was1474

computed by using dynamic programming to find the shortest path between each possible starting location1475

and the goal location, averaged across all environments seen by the RL agent. To compute the exploration1476

baseline, brute force search was used to identify the path that explored the full environment as fast as possible.1477

The optimal exploration performance was then computed as the expected time-to-first-reward under this1478

policy, averaged over all possible goal locations.1479

Estimation of thinking times1480

In broad strokes, we assumed that for each action, the response time tr is the sum of a thinking time tt and1481

some perception-action delay, both subject to independent variability:1482

tr = tt + td with tt ∼ pt and td ∼ pd. (11)
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Here, {tr, tt, td} ≥ 0 since elapsed time cannot be negative. We assumed that the prior distribution over1483

perception-action delays, pd, was identical during guided and non-guided trials. For each subject, we obtained1484

a good model of pd (see below) by considering the distribution of response times measured during guided1485

trials. This was possible because guided trials involved no ‘thinking’ by definition, such that td ≡ tr was1486

directly observed. Finally, for any non-guided trial with observed response tr, we formed a point estimate of1487

the thinking time by computing the mean of the posterior p(tt|tr):1488

t̂t|tr = Ep(tt|tr)[tt]. (12)

In more detail, we took pt during guided trials to be uniform between 0 and 7 s – the maximum response1489

time allowed, beyond which subjects were considered disengaged, and the trial was discarded and reset. For1490

pd(td), we assumed a shifted log-normal distribution,1491

pd(td;µ, σ, δ) =
{

1
(td−δ)σ

√
2π

exp
[
− (log(td−δ)−µ)2

2σ2

]
if td > δ

0 otherwise
(13)

with parameters µ, σ, and δ obtained via maximum likelihood estimation based on on the collection of1492

response times tr ≡ td observed during guided trials. For a given δ, the maximum likelihood values of µ and1493

σ are simply given by the mean and standard deviation of the logarithm of the observations. To fit this1494

shifted log-normal model, we thus performed a grid search over δ ∈ [0,min(tguided
r )− 1] at 1 ms resolution1495

and selected the value under which the optimal (µ, σ) gave the largest likelihood. This range of δ was chosen1496

to ensure that (i) only positive values of tguided
r had positive probability, and (ii) all observed tguided

r had1497

non-zero probability. We then retained the optimal µ, σ, and δ to define the prior over pd(td) on guided trials1498

for each subject.1499

According to Bayes’ rule, the posterior is proportional to1500

p(tt|tr) ∝ p(tr|tt)p(tt) (14)

where

p(tr|tt) =
∫ ∞

0
dtd pd(td) p(tr|tt, td) (15)

=
∫ ∞

0
dtd pd(td) δ(td − (tr − tt)) (16)

= pd(tr − tt) (17)

Therefore, the posterior is given by1501

p(tt|tr) ∝
{
pd(tr − tt) if tt > 0

0 otherwise, (18)

resulting in the following posterior mean:1502

t̂t|tr := Ep(tt|tr)[tt] = tr −
∫ tr

δ

td pd(td|td < tr;µ, σ, δ) dtd. (19)

Here, pd(td|td < tr) denotes pd(td) re-normalized over the interval td < tr, and the condition (td < tr) is1503

equivalent to (tt > 0). We note that the integral runs from δ to tr since pd(td) = 0 for td < δ. As δ simply1504

shifts the distribution over td, we can rewrite this as1505

t̂t|tr = tr − δ −
∫ tr−δ

0
x pd(x|x < tr − δ;µ, σ, δ = 0) dx. (20)

This is useful since the conditional expectation of a log-normally distributed random variable with δ = 0 is
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given in closed form by

Eµ,σ[x|x < k] =
∫ k

0
x p(x|x < k;µ, σ, δ = 0) dx (21)

= exp[µ+ 0.5σ2]
Φ
(

log(k)−µ−σ2

σ

)
Φ
(

log(k)−µ
σ

) , (22)

where Φ(·) is the cumulative density function of the standard Gaussian, N (0, 1). This allows us to compute1506

the posterior mean thinking time for an observed response time tr in closed form as1507

t̂t|tr = tr − δ − Eµ,σ[x|x < tr − δ]. (23)

We note that the support of pd(td|td < tr;µ, σ, δ) is td ∈ [δ, tr]. For 0.6% of the non-guided decisions, the value1508

of tr was lower than the estimated δ for the corresponding participant, in which case p(tt|tr) is undefined.1509

In such cases, we defined the thinking time to be t̂t|tr = 0, since the response time was shorter than our1510

estimated minimum perception-action delay. A necessary (but not sufficient) condition for tr < δ is that tr is1511

smaller than the smallest response time in the guided trials.1512

The whole procedure of fitting and inference described above was repeated separately for actions that1513

immediately followed a teleportation step (i.e. the first action in each trial) and for all other actions. This1514

is because we expected the first action in each trial to be associated with an additional perceptual delay1515

compared to actions that followed a predictable transition.1516

All results were qualitatively similar using other methods for estimating thinking time, including (i) a1517

log-normal prior over td with no shift (δ = 0), (ii) using the posterior mode instead of the posterior mean, (iii)1518

estimating a constant td from the guided trials, and (iv) estimating a constant td as the 0.1 or 0.25 quantile1519

of tr from the non-guided trials.1520

Thinking times in different situations1521

To investigate how the thinking time varied in different situations, we considered only exploitation trials1522

and computed for every action (i) the minimum distance to the goal at the beginning of the corresponding1523

trial, and (ii) what action number this was within the trial. We then computed the mean thinking time as a1524

function of action number separately for each distance-to-goal. This analysis was repeated across experimental1525

subjects and results reported as mean and standard error across subjects.1526

We repeated this analysis for the RL agents, where ‘thinking time’ was now defined based on the average1527

number of rollouts performed, conditioned on action-within-trial and original distance to goal.1528

Comparison of human and model thinking times1529

For each subject and each RL agent, we clamped the trajectory of the agent to that taken by the subject1530

(i.e. we used the human actions instead of sampling from the policy). After taking an action, we recorded1531

π(rollout) under the model on the first timestep of the new state for comparison with human thinking times.1532

We then sampled a rollout with probability π(rollout) and took an action (identical to the next human action)1533

with probability 1− π(rollout), repeating this process until the next state was reached. Finally, we computed1534

the average π(rollout) across 20 iterations of each RL agent for comparison with the human thinking time in1535

each state. Figure 2E shows the human thinking time as a function of π(rollout), with the bars and error1536

bars illustrating the mean and standard error in each bin. For this analysis, data was aggregated across all1537

participants. Results were similar if we compared human thinking times with the average number of rollouts1538

performed rather than the initial π(rollout).1539

In Figure 2F, we computed the correlation between thinking time and various regressors on a participant-by-1540

participant basis and report the result as mean and standard error across participants (n = 94). For the1541

‘residual’ correlation, we first computed the mean thinking time for each distance-to-goal for each participant1542

and the corresponding mean π(rollout) for the RL agents. We then subtracted the appropriate mean values1543

from the thinking times and π(rollout) in the human participants and RL agents. In other words, we1544
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subtracted the average thinking time for situations 5 steps from the goal from all data points where the1545

participant was 5 steps from the goal etc. Finally, we computed the correlation between the residual π(rollout)1546

and the residual thinking times. This analysis was repeated across all participants and the result reported as1547

mean and standard error across participants. Note that all ‘distance-to-goal’ measures refer to the shortest1548

path to goal rather than the number of steps actually taken by the participant to reach the goal.1549

Analysis of hippocampal replays1550

For our analyses of hippocampal replays in rats, we used data recently recorded by Widloski and Foster1551

(2022). This dataset consisted of a total of 37 sessions from 3 rats (n = 17, 12, 8 sessions for each rat) as1552

they performed a dynamic maze task. This task was carried out in a square arena with 9 putative reward1553

locations. In each session, six walls were placed in the arena, and a single reward location was randomly1554

selected as the ‘home’ well. The task involved alternating between moving to this home well and a randomly1555

selected ‘away’ well. Importantly, a delay of 5-15 s was imposed between the animal leaving the previous1556

rewarded well before reward (chocolate milk) became available at the next rewarded well. On the away trials,1557

the emergence of reward was also accompanied by a visual cue at the rewarded well, informing the animal1558

that this was the reward location. In a given session, the animals generally performed around 80 trials (401559

home trials and 40 away trials; Figure S6). For further task details, we refer to Widloski and Foster (2022).1560

For our analyses, we only included trials which lasted less than 40 seconds. We did this to discard time1561

periods where the animals were not engaged with the task. Additionally, we discarded the first home trial of1562

each session, where the home location was unknown, since we wanted to compare the hippocampal replays1563

with model rollouts during the exploitation phase of the maze task. For all analyses, we discretized the1564

environment into a 5x5 grid (the 3x3 grid of wells and an additional square of states around these) in order1565

to facilitate more direct comparisons with our human and RNN task. Following Widloski and Foster (2022),1566

we defined ‘movement epochs’ as times where the animal had a velocity greater than 2 cm/s and ‘stationary1567

epochs’ as times there the animal had a velocity less than 2 cm/s.1568

Replay detection1569

To detect replays, we followed Widloski and Foster (2022) and fitted a Bayesian decoder to neural activity as a1570

function of position during movement epochs in each session, assuming Poisson noise statistics and considering1571

only neurons with an average firing rate of at least 0.1 Hz over the course of the session. This decoder was1572

trained on a rolling window of neural activity spanning 75 ms and sampled at 5 ms intervals (Widloski and1573

Foster, 2022). We then detected replays during stationary epochs by classifying each momentary hippocampal1574

state as the maximum likelihood state under the Bayesian decoder, again using neural activity in 75 ms1575

windows at 5 ms intervals. Forward replays were defined as sequences of states which included 2 consecutive1576

transitions to an adjacent state (i.e. a temporally and spatially contiguous sequence of three or more states),1577

and which originated at the true animal location. For all animals, we only analyzed replays where the animal1578

was at the previous reward location before it initiated the new trial (c.f. Widloski and Foster, 2022). To1579

increase noise robustness, we allowed for short ‘lapses’ in a replay, defined as periods with a duration less than1580

or equal to 20 ms, where the decoded location moved to a distant location before returning to the previously1581

decoded location. These lapses were ignored for downstream analyses.1582

Wall avoidance1583

To compute the wall avoidance of replays (Figure 4B), we calculated the fraction of state transitions that1584

passed through a wall. This was done across all replays preceding a ‘home’ trial (i.e. when the animal knew1585

the next goal). As a control, we computed the same quantity averaged over 7 control conditions, which1586

corresponded to the remaining non-identical rotations and reflections of the walls from the corresponding1587

session. We repeated this analysis for all sessions and report the results in Figure 4 as mean and standard error1588

across sessions. To test for significance, we randomly permuted the ‘true’ and ‘control’ labels independently1589

for each session and computed the fraction of permutations (out of 10,000), where the difference between1590

‘control’ and ‘true’ was larger than the experimentally observed value.1591

This analysis was also repeated in the RL agent, where the control value was computed with respect to 50,0001592

other wall configurations sampled from the maze generating algorithm (Algorithm 1).1593
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Reward enrichment1594

To compute the reward enrichment in hippocampal replays (Figure 4C), we computed the fraction of all1595

replays preceding a ‘home’ trial that passed through the reward location. As a control, we repeated this1596

analysis for the remaining 7 locations that were neither the reward location nor the current agent location1597

(for each replay). Control values are reported as the average across these 7 control locations across all replays.1598

This analysis was repeated for all sessions. To test for significance, we randomly permuted the ‘goal’ and1599

‘control’ labels independently for each session and computed the fraction of permutations (out of 10,000)1600

where the difference between ‘goal’ and ‘control’ was larger than the experimentally observed value.1601

This analysis was also repeated in the RL agent, where the control value was computed across the remaining1602

14 possible goal locations (that were not the current location or true goal).1603

Behavior by replay type1604

To investigate how the animal behavior depended on the type of replay (Figure 4D), we analyzed home trials1605

and away trials separately. We constructed a list of all the ‘first’ replayed actions â1, defined as the cardinal1606

direction corresponding to the first state transition in each replay. We then constructed a corresponding list1607

of the first physical action following the replay, corresponding to the cardinal direction of the first physical1608

state transition after the replay. Finally, we computed the overlap between these two vectors to arrive at the1609

probability of ‘following’ a replay. This overlap was computed separately for ‘successful’ and ‘unsuccessful’1610

replays, where successful replays were defined as those that reached the goal without passing through a1611

wall. For the unsuccessful replays, we considered the 7 remaining locations that were not the current animal1612

location or current goal. We then computed the average overlap under the assumption that each of these1613

locations were the goal, while discarding replays that were successful for the ‘true’ goal. This analysis was1614

performed independently across all sessions and results reported as mean and standard error across sessions.1615

To test for significance, we randomly permuted the ‘successful’ and ‘unsuccessful’ labels independently for each1616

session and computed the fraction of permutations (out of 10,000) where the difference between successful1617

and unsuccessful replays was larger than the experimentally observed value.1618

This analysis was also repeated in the RL agent, where we considered all exploitation trials together since1619

they were not divided into ‘home’ or ‘away’ trials. In this case, the control was computed with respect to all1620

14 locations that were not the current location or current goal location.1621

Effect of consecutive replays1622

To compute how the probability of a replay being ‘successful’ depended on replay number (Figure 4E),1623

we considered all trials where an animal performed at least 3 replays. We then computed a binary vector1624

indicating whether each replay was successful or not. From this vector, we subtracted the expected success1625

frequency from a linear model predicting success from (i) the time since arriving at the current well, and (ii)1626

the time until departing the current well. We did this to account for any effect of time that was separate1627

from the effect of replay number, since such an effect has previously been reported by Ólafsdóttir et al.1628

(2017). However, this work also notes that many of what they denote ‘disengaged’ replays are non-local1629

and would automatically be filtered out by our focus on local replays. When fitting this linear model, we1630

capped all time differences at a maximum value of |∆t| = 15 s to avoid the analysis being dominated by1631

outliers, and because Ólafsdóttir et al. (2017) only observe an effect for time differences in this range. Our1632

results were not sensitive to altering or removing this threshold. We then conditioned on replay number1633

and computed the probability of success (after regressing out time) as a function of replay number. Finally,1634

we repeated this analysis for all 7 control locations for each replay and divided the true values by control1635

values defined as the average across replays of the average across control locations. A separate correction1636

factor was subtracted from these control locations, which was computed by fitting a linear model to predict1637

the average probability of successfully reaching a control location as a function of the predictors described1638

above. The normalization by control locations was done to account for changes in replay statistics that might1639

affect the results, such as systematically increasing or decreasing replay durations with replay number. To1640

compute the statistical significance of the increase in goal over-representation, we also performed this analysis1641

after independently permuting the order of the replays in each trial to break any temporal structure. This1642

permutation was performed after regressing out the effect of time. We repeated this analysis across 10,0001643

independent permutations and computed statistical significance as the number of permutations for which the1644
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increase in over-representation was greater than or equal to the experimental value.1645

For the corresponding analysis in the RL agents, we did not regress out time since there is no separability1646

between time and replay number. Additionally, the RL agent cannot alter its policy in the absence of explicit1647

network updates – which in our model are always tied to either a rollout or an action. As noted in the main1648

text, an increase in the probability of ‘success’ with replay number in the RL agent could also arise from the1649

fact that performing further replays is less likely after a successful replay than after an unsuccessful replay1650

(Figure S8). We therefore performed the analysis of consecutive replays in the RL agent in a ‘crossvalidated’1651

manner at the level of the policy. In other words, every time the agent performed a rollout, we drew two1652

samples from the rollout generation process. The first of these samples was used as normal by the agent to1653

update hk and drive future behavior. The second sample was never used by the agent, but was instead used1654

to compute the ‘success frequency’ for our analyses. This was done to break the correlation between the1655

choice of performing a replay and the assessment of how good the policy was, which allowed us to compute1656

an unbiased estimate of the quality of the policy as a function of replay number. As mentioned in the main1657

text, such an analysis is not possible in the biological data. However, since the biological task was not a1658

reaction time task, we expect less of a causal effect of replay success on the number of replays. Additionally,1659

as noted in the text, if some of the effect in the biological data is in fact driven by a decreased propensity for1660

further replays after a successful replay, that is in itself supporting evidence for a theory of replays as a form1661

of planning.1662
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Supplementary note on experimental and architectural choices1663

In this short note, we discuss some of the many architectural and modeling choices that went into our work.1664

As is the case for much work in modern computational neuroscience, the space of models was vast – and1665

larger than we could feasibly explore fully in a single paper. In what follows, we hope to provide some1666

additional motivation for the choices that were made in the main paper and to provide additional intuition1667

for the importance and effect of various architectural choices and hyperparameters in our work. This note is1668

also unlikely to be exhaustive, but we hope that it will be useful both for the reader hoping to gain a deeper1669

understanding of our work, and for those looking to draw inspiration from it in their own computational1670

models.1671

Network size1672

The size of the network used in our work is of some importance. We show in Figure S3 that our key results1673

hold across a range of different network sizes. However, as the network becomes larger, its model-free ‘base1674

policy’ also becomes better – to the point where rollouts become less and less useful as there is less room for1675

improvement from the base policy. Indeed, in the limit of an infinitely large network trained on an infinitely1676

large dataset, we expect a perfect base policy and no rollouts. On the contrary, if the network gets too small,1677

it is unlikely to be able to learn how to use the rollouts for policy improvement, and we again expect rollouts1678

to be less useful. In both limits, we also expect the notions of ‘large’ and ‘small’ to depend on the complexity1679

of the task in question. For the task considered in this study, we found substantial use of rollouts across a1680

range of network sizes between 40 to 140, and we found that the frequency of rollouts tended to decrease1681

with network size (Figure S9). We did not test any networks larger than 140 units due to computational1682

constraints associated with the training of large networks. The exact range of sizes for which our results hold1683

will also depend on the type of network used, with LSTMs likely to be similar to the GRUs used in this work,1684

and vanilla RNNs probably needing larger networks for comparable performance.1685

Planning horizon1686

In this work, we assumed a constant planning horizon of L = 8 steps and showed in Figure S3 that our key1687

results are robust to changes to this hyperparameter between 4 and 12 (we did not test values outside this1688

range). We chose a value of 8 for the main paper since it seemed like a reasonable planning depth in our fairly1689

simple task with a relatively small action space, and it is comparable to the planning depth estimated in other1690

simple games (van Opheusden et al., 2021). It is worth noting that some aspects of our results do change1691

with planning depth. In particular, the change in policy for successful and unsuccessful rollouts is dependent1692

on L, such that longer planning horizons lead to smaller average policy changes for successful rollouts and1693

larger changes for unsuccessful rollouts. In the language of policy gradients, we expect that this is because the1694

‘baseline’ implicitly used by the network in its state update is related to the average success of a rollout. In1695

other words, if almost all rollouts are successful (because L is sufficiently large), little is learned by observing1696

that a rollout is successful, and the policy should not change much on the basis of this information. It is1697

possible that there will be larger average policy changes in this setting if we instead condition on how late1698

in the rollout the reward was found, which contains more information about the ‘goodness’ of the replayed1699

trajectory. It would also be possible to make the planning horizon variable and let the agent itself choose1700

its planning depth. This could be done in two different ways, namely by (i) making the agent decide up1701

front how long a trajectory it wants to simulate, or (ii) letting the agent decide in closed-loop by iteratively1702

returning a partial plan and deciding whether to continue planning or terminate and take a physical action.1703

We opted for the simple fixed length solution since it has a smaller action space and fewer network iterations,1704

making optimization easier. However, we expect that a variable planning length model is closer to real human1705

behavior and believe that this will be an interesting avenue for future research.1706

Time cost of acting and planning1707

Related to the discussion of planning depth, we also assumed a constant temporal opportunity cost of planning1708

for the agent. This was done despite the rollouts having variable length depending on whether and when the1709

goal was reached during the rollout. We did this because the agent did not know a priori how long the rollout1710

would be and had no direct control over its length. In the case of hippocampal replays being contained in1711

sharp-wave ripples (SWRs), this is consistent with an assumption that a single trajectory occurs in a single1712

SWR, and that the inter-SWR interval is independent of the length of the replayed trajectory. We did not1713
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train any agents with a variable temporal opportunity cost but do not expect any substantial differences1714

from our current results.1715

More specifically, we defined a rollout in the model to last 120 ms. This is similar to the duration of1716

hippocampal replays reported in the literature (Kurth-Nelson et al., 2016). In contrast, a single model1717

action was defined to take 400 ms. These values were not directly fitted to the human data, as all model1718

hyperparameters, including the episode length and relative cost of planning and acting, were chosen before1719

any analyses of human behavior to avoid overfitting. Instead, the relative cost of rollouts compared to actions1720

in the model, βroll := ∆trollout/∆taction = 0.3, was chosen such that there was regular use of rollouts in the1721

task. The episode length T = 50 actions was chosen to facilitate training of the model. We then designed our1722

human behavioral experiment in a way that allowed participants to take approximately the same number of1723

actions in a given episode as the model, which motivated an episode length of T = 20 seconds. This implicitly1724

defined the ‘duration’ of a model action as ∆taction = 20 seconds/50 actions = 400 ms. The duration of a1725

rollout was then defined as ∆trollout = βroll×400 ms = 120 ms. Since we did not explicitly fit these parameters1726

to the data, there are likely to be a range of parameter choices that lead to better fits to the human data1727

from this particular experiment. Similarly, there is most definitely a range of hyperparameters that lead1728

to worse data fits. Indeed our goal was not to chase the lowest possible discrepancy from human response1729

times, but rather to demonstrate the general concept that models with the ability to perform rollouts do so1730

in similar situations to humans. This is also the reason that we focus on correlations in the paper rather than1731

e.g. MSEs, since the model ‘thinking times’ can be stretched, compressed, and shifted to different extents by1732

altering the model hyperparameters.1733

Policy used for planning1734

In our work, we assumed that the policy used within the planning loop (i.e. the policy from which actions1735

were sampled during a rollout) was the same as the policy used for sampling actions when actually interacting1736

with the environment. We did this both for simplicity of exposition and computation, and because we think1737

it is likely to be a reasonable approximation to how humans plan. However, there is in theory nothing in our1738

model that prevents the rollout policy from differing from the action policy. In this case, rollouts can still be1739

used to estimate gradients of the future reward with respect to the hidden state, provided that the policy1740

from which rollout actions are sampled is known. This could be done e.g. through the use of importance1741

sampling for off-policy learning. Additionally, in the case of sequential replays, it is plausible that previous1742

replays directly affect future replays, e.g. in a process of exploration. In our current model, there was no1743

option to systematically explore, and previous replays only affected future replays through their effect on1744

the base policy. In theory, it would also be possible to more systematically explore the state space using1745

sequential replays, and indeed we did experiment with ‘rollouts’ corresponding to node expansions of more1746

advanced search algorithms, which can similarly be used to drive improved decision making. More generally,1747

it would also be possible to optimize the rollout policy explicitly for planning by differentiating through the1748

rollout process. This is in contrast to the present work, where the rollout policy was tied to the base policy,1749

and rollouts were treated as part of the ‘environment’. This meant that there was no propagation of gradients1750

to allow for explicit adaptation of the policy to be better for planning.1751

Feedback from planning1752

When performing a rollout, the agent received an additional input on the subsequent timestep consisting of1753

(i) a flattened array of the simulated actions, and (ii) a binary input indicating whether or not the rollout1754

reached the (imagined) goal. Another reasonable choice of feedback input would be to return the sequence of1755

states instead of the sequence of actions, or potentially to return both. Our reason for favoring the action1756

sequence was primarily that the action space is lower dimensional (4) than the state space (16), which means1757

that the input dimensionality is much lower than it would have been for the state sequence, assuming a1758

one-hot encoding. This does raise the question of where this action sequence would emerge in biological1759

circuits, given that hippocampal replays are canonically assumed to contain spatial information. However,1760

we consider it reasonable that this state information could be converted to information about the actions1761

that would take you there. Instead of returning a binary input of whether the goal was reached, the rollout1762

process could also return the output of a learned value function. We did experiment with returning both the1763

binary ‘goal’ feedback and the imagined value function, and we found that the agent predominantly used the1764

goal information in this case. We therefore chose to remove the learned value from the feedback to simplify1765
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the model. However, we imagine that returning a learned value function would be useful in more complicated1766

tasks with multiple or non-binary rewards.1767

Stochastic environments and multiple goals1768

For simplicity, we assumed that the environment was deterministic and that there was only a single goal.1769

However, our model could also be extended to the setting of stochastic environments and multiple or non-1770

binary rewards. In the case of stochastic environments, the agent would still need to simulate a sample from1771

the policy. The internal world model was already trained to generate a distribution over new states, and1772

in stochastic environments, we would want to sample from this distribution instead of using the maximum1773

likelihood next state. Provided that the agent has learned a well-calibrated distribution over state transitions,1774

the resulting rollout should still provide an unbiased estimate of the gradient of expected future reward with1775

respect to the hidden state. In the case of multiple goals, it would still be possible to use the agent as-is1776

and return a binary indicator of whether the agent reached any (or each) goal. However, as noted above, it1777

would also be possible to return a learned value estimate instead of the binary goal information. In cases1778

where these goals do not lead to random teleportation, it could also be useful to let the rollout continue1779

beyond the goal. We chose not to do so in the present work, since the transition after reaching the goal1780

was entirely unpredictable, so the simulated action sequence beyond this point would not be informative of1781

expected reward.1782

Space in which to plan1783

We chose rollouts to occur in the space of states and observations. More specifically, the agent had to predict1784

the upcoming state sk, and a new observation xk was constructed automatically from sk during the rollout.1785

An alternative would have been to directly learn to predict xk, which we decided not to do since the majority1786

of the input was constant within an episode. However, in more general task settings, where the environment1787

is more variable, it might be simpler to predict the input directly. Additionally, in partially observable1788

environments, there is a weaker correspondence between states and observations, and rollouts would require1789

samples from the distribution over possible observations. This could either be done directly in observation1790

space or indirectly via some inferred (or known) latent state space.1791

We consider it likely that humans do not plan explicitly in pixel space and instead use some form of latent1792

planning representation. In the present work, this was also the case to some extent, since the agent input1793

was already an abstract representation. However, in future work, it could be interesting to use a learned1794

latent space instead. This could e.g. be done by training an autoencoder to reconstruct the state and1795

reward information as in the VariBAD model (Zintgraf et al., 2019). Alternatively, planning could take1796

place in a latent space explicitly optimized to yield good plans as in MuZero (Schrittwieser et al., 2020). We1797

did not experiment with any of these possibilities but believe that the results would be comparable to our1798

present work. A major reason for our choice to implement planning in the space of state transitions is that1799

performing high-fidelity rollouts in state space only requires the agent to learn a state transition function. As1800

has been demonstrated in previous work, a transition function could feasibly be learned in a self-supervised1801

manner (Whittington et al., 2020), allowing agents to learn how to plan with little task-specific information.1802

Additionally, rollouts in state space have close parallels to hippocampal replays as detailed in Figure 4.1803

Choice of task1804

The task used for human behavioral experiments and RL agents differs somewhat from the task used for1805

the hippocampal replay data. Notable differences include (i) the presence of ‘away’ trials in the rodent data1806

instead of the teleportation step in the human data, (ii) the different maze sizes and wall configurations,1807

and (iii) the presence of a forced delay between rewards in the rodent data. A natural question is thus why1808

we did not match the human and RL task to the rodent task, which we could not change since it relied on1809

previously published data. There were a few major reasons for our decision to use different tasks for the1810

humans and RL agents compared to the rodent experiments. One is that the rodent task was not a reaction1811

time task, meaning that there was a forced delay between consecutive rewards. If we introduced a similar1812

delay in the human task, there would be no incentive to act fast. Unfortunately, since we do not have access1813

to intracortical recordings from the human subjects, the speed of acting is the major signal we analyse from1814

our human participants, and it is therefore necessary with a reaction time task. Of course we could still have1815

included away trials and used similar arenas without enforcing a delay between rewards. However, we cared1816
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mostly about the ‘home’ trials and therefore saw no reason to make participants spend half their time on1817

‘away’ trials. Additionally, the smaller Euclidean maze used in the rodent experiments would likely have been1818

too simple for humans and reduced our signal to noise ratio, since there would be less time spent thinking. A1819

simpler task and arena might similarly be simple enough that our RNNs could solve it in a fully ‘model-free’1820

manner without relying on rollouts to the same extent as in the present work. It is interesting to note that1821

such suboptimality is a key factor of our results, but we believe that this is representative of human behavior1822

as well, where thinking is mostly utilized in scenarios where we do not already know what to do.1823

Regularizing time or energy1824

In our RL agent, we did not incorporate any explicit energy costs for either actions or rollouts. Instead,1825

the only unit of ‘cost’ was time elapsed. We did this since the only explicit incentive to be efficient in our1826

human task was that fast decision making and good actions left more time for collecting reward. It could of1827

course be argued that there is also some energy cost associated with taking actions in our online task, but (i)1828

this energy cost is likely to be negligible, and (ii) if we wanted to model such energy costs in the RL agent,1829

it would require us to introduce an additional hyperparameter to convert between ‘energy’ and ‘time’. We1830

considered it more interpretable and robust to only operate in the space of time, and we also believe that this1831

is representative of many tasks encountered in our daily lives.1832
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