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Abstract

When interacting with complex environments, humans can rapidly adapt their behavior to changes in task
or context. To facilitate this adaptation, we often spend substantial periods of time contemplating possible
futures before acting. For such planning to be rational, the benefits of planning to future behavior must
at least compensate for the time spent thinking. Here we capture these features of human behavior by
developing a neural network model where not only actions, but also planning, are controlled by prefrontal
cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by
sampling imagined action sequences drawn from its own policy, which we refer to as ‘rollouts’. Our results
demonstrate that this agent learns to plan when planning is beneficial, explaining the empirical variability
in human thinking times. Additionally, the patterns of policy rollouts employed by the artificial agent
closely resemble patterns of rodent hippocampal replays recently recorded in a spatial navigation task, in
terms of both their spatial statistics and their relationship to subsequent behavior. Our work provides
a new theory of how the brain could implement planning through prefrontal-hippocampal interactions,

where hippocampal replays are triggered by — and in turn adaptively affect — prefrontal dynamics.

Introduction

Humans and other mammals have a unique ability
to adapt rapidly to new information and chang-
ing environments. Such adaptation often involves
spending extended and variable periods of time con-
templating possible futures before taking an action
(Callaway et al., 2022; van Opheusden et al., 2021).
For example, we might take a moment to think
about which route to take to work depending on
traffic conditions. The next day, some roads might
be blocked due to roadworks, requiring us to adapt
and mentally review the available routes in a pro-
cess of re-planning before leaving the house. Since
thinking does not involve the acquisition of new in-
formation or interactions with the environment, it
is perhaps surprising that it is so ubiquitous for hu-
man decision making. However, thinking allows us
to perform more computations with the available
information, which can lead to improved perfor-
mance on downstream tasks (Bansal et al., 2022).
Since physically interacting with the environment
can consume time and other resources, or incur un-

necessary risk, the benefits of planning often more
than make up for the time that was lost to the
planning process itself.

Despite a wealth of cognitive science research on
the algorithmic underpinnings of planning (Solway
and Botvinick, 2012; Callaway et al., 2022; Mat-
tar and Daw, 2018; Mattar and Lengyel, 2022),
little is known about the underlying neural mecha-
nisms. This question has been difficult to address
due to a scarcity of intracortical recordings dur-
ing planning, and during contextual adaptation
more generally. However, neuroscientists have be-
gun to collect large-scale neural recordings during
increasingly complex behaviors from the hippocam-
pus and prefrontal cortex, brain regions known to
be important for memory, decision making, and
adaptation (Widloski and Foster, 2022; Pfeiffer and
Foster, 2013; Gillespie et al., 2021; Wang et al.,
2018; Samborska et al., 2022; Jadhav et al., 2016;
Wu et al., 2017). These studies have demonstrated
the importance of prefrontal cortex for generalizing
abstract task structure across contexts (Wang et al.,
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2018; Samborska et al., 2022). Additionally, it has
been suggested that planning could be mediated by
the process of hippocampal forward replays (Pfeif-
fer and Foster, 2013; Widloski and Foster, 2022;
Mattar and Daw, 2018; Agrawal et al., 2022; Fos-
ter, 2017; Jiang et al., 2022; Johnson and Redish,
2007). Despite these preliminary theories, little is
known about how hippocampal replays could be
integrated within the dynamics of downstream cir-
cuits to implement planning-based decision making
and facilitate adaptive behavior (Jai and Frank,
2015). While prevailing theories of learning from re-
plays generally rely on dopamine-mediated synaptic
plasticity (Gomperts et al., 2015; Mattar and Daw,
2018; De Lavilléon et al., 2015), it is currently un-
clear whether this process could operate sufficiently
fast to also inform online decision making.

It has recently been suggested that some forms of
fast adaptation could result from recurrent meta-
reinforcement learning (meta-RL; Wang et al., 2018,
2016; Duan et al., 2016). Such meta-RL mod-
els posit that adaptation to new tasks can be di-
rectly implemented by the recurrent dynamics of
the prefrontal network. The dynamics themselves
are learned through gradual changes in synaptic
weights, which are modified over many different
environments and tasks in a slow process of rein-
forcement learning. Importantly, such recurrent
neural network (RNN)-based agents are able to
adapt rapidly to a new task or environment after
training by integrating their experiences into the
hidden state of the RNN, with no additional synap-
tic changes (Wang et al., 2018, 2016; Duan et al.,
2016; Zintgraf et al., 2019; Alver and Precup, 2021).
However, previous models are generally only capa-
ble of making instantaneous decisions and thus do
not have the ability to improve their choices by
‘thinking’ prior to taking an action. Wang et al.
(2018) explored the possibility of allowing multiple
steps of network dynamics before making a deci-
sion, but this additional computation was also pre-
determined by the experimenter and not adaptively
modulated by the agent itself.

In this work, we propose a model that similarly com-
bines slow synaptic learning with fast adaptation
through recurrent dynamics in the prefrontal net-
work. In contrast to previous work, however, this
recurrent meta-learner can choose to momentarily
forgo physical interactions with the environment
and instead ‘think’ (Hamrick et al., 2017; Pascanu
et al., 2017). This process of thinking is formalized
as the simulation of sequences of imagined actions,
sampled from the policy of the agent itself, which

we refer to as ‘rollouts’ (Figure 1A). We introduce
a flexible maze navigation task to study the rela-
tionship between the behavior of such RL agents
and that of humans (Figure 1B). In this task, both
human participants and RL agents (collectively ‘sub-
jects’) have to discover the spatial location of an
unknown goal in a novel environment, and they sub-
sequently have to return to this goal from multiple
different starting locations (Morris, 1981; Banino
et al., 2018). Intriguingly, RL agents trained on this
task learn to use rollouts to improve their policy and
better generalize to previously unseen environments,
and they selectively trigger rollouts in situations
where humans also spend more time deliberating.

Additionally, we draw explicit parallels between the
model rollouts and hippocampal replays through
novel analyses of recent hippocampal recordings
from rats performing a similar maze task (Widloski
and Foster, 2022). We find that the content and
behavioral effects of hippocampal replays in this
dataset have a striking resemblance to the content
and effects of policy rollouts in our computational
model. Our work thus addresses two key questions
from previous studies on hippocampal replays and
planning. First, we show that a recurrent network
can meta-learn when to plan instead of having to
precompute a ‘plan’ in order to decide whether to
use it (Mattar and Daw, 2018; Russek et al., 2022).
Second, we propose a new theory of replay-mediated
planning, which utilizes fast network dynamics for
real-time decision making that could operate in par-
allel to slower synaptic plasticity (Gomperts et al.,
2015). To formalize this second point, we provide a
normative mathematical theory of how replays can
improve decision making via feedback to prefrontal
cortex by approximating policy gradient optimiza-
tion (Sutton and Barto, 2018). We show that such
an optimization process naturally arises in our RL
agent trained for rapid adaptation and suggest that
biological replays could implement a similar process
of rollout-driven decision making (Figure 1C).

Our work provides new insights into the neural un-
derpinning of ‘thinking’ by bridging the gap between
recurrent meta-RL (Wang et al., 2018), machine
learning research on adaptive computation (Ham-
rick et al., 2017; Graves, 2016; Banino et al., 2021),
and theories of meta-cognition (Griffiths et al., 2015;
Botvinick and Cohen, 2014; Botvinick et al., 2020).
We link these idea to the phenomenon of hippocam-
pal replays and provide a new theory of how forward
replays can modulate behavior through recurrent
interactions with prefrontal cortex.
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Figure 1: Task and model schematics. (A) The RL agent consisted of a recurrent neural network, which
received information about the environment and executed actions in response. The primary output of the
agent was a policy from which the next action was sampled. This action could either be to move in the
environment in a given direction (up, down, left or right), or to ‘plan’ by using an internal world model to
simulate a possible future trajectory (a ‘rollout’). The agent was trained to maximize its average reward
per episode and to predict (i) the upcoming state, (ii) the current goal location, and (iii) the value of the
current state. When the agent decided to plan, the first two predictors were used in an open-loop planning
process, where the agent iteratively sampled ‘imagined’ actions and predicted what the resulting state would
be, and whether the goal had been (virtually) reached. The output of this planning process was appended
to the agent’s input on the subsequent time step (details in text). A physical action was assumed to take
400 ms and a rollout was assumed to take 120 ms. (B) Schematic illustrating the dynamic maze task. In
each episode lasting T" = 20 seconds, a maze and a goal location were randomly sampled. Each time the goal
was reached, the subject received a reward and was subsequently “teleported” to a new random location,
from which it could return to the goal to receive more reward. The maze had periodic boundaries, meaning
that subjects could exit one side of the maze to appear at the opposite side. (C) Schematic illustrating
how policy rollouts can improve performance by altering the momentary policy. An agent might perform a
policy rollout leading to low value (top; black), which would decrease the probability of physically performing
the corresponding sequence of actions. Conversely, a rollout leading to high value (bottom; orange) would
increase the probability of the corresponding action sequence. Notably, these policy changes occur at the
level of network dynamics rather than parameter updates.

Results domly initialized and remained fixed until the next
episode. The initial position of the subject was also
randomly sampled. Subjects first had to explore the
maze by taking discrete steps in the cardinal direc-

Humans think for different durations in dif-
ferent contexts

To characterize the behavioral signatures of plan- tions until they found the hidden reward location.
ning, we recruited 94 human participants from Pro- Upon finding this goal, subjects were immediately
lific to perform an online experiment. The experi- moved to a new random location, initiating a phase
ment consisted of a maze navigation task in which of exploitation during which they repeatedly had
the walls and goal location periodically changed, to return to the same goal (Figure 1B). We refer
thus requiring rapid adaptation. The environment to a single instance of navigating from a random
was a 4 x 4 grid with periodic boundaries, a set starting location to the goal as a ‘trial’ To encour-
of impassable walls, and a single hidden reward age good performance, human participants were
location (Figure 1B; Methods). The task consisted paid a monetary bonus proportional to the average
of a succession of ‘episodes’, each lasting T = 20 number of trials completed per episode (Methods;
seconds. At the beginning of each episode, both the Figure S1), and the behavior of all subjects was
wall configuration and the reward location were ran- recorded over 40 episodes.


https://doi.org/10.1101/2023.01.16.523429
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.523429; this version posted January 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

We first examined human performance as a func-
tion of trial number within each episode, comparing
the first exploration trial with subsequent exploita-
tion trials. We found that participants exhibited a
rapid ‘one-shot’ transition to goal-directed naviga-
tion after the initial exploration phase (Figure 2A,
black). This was true even though each new maze
was not seen before, and it is consistent with pre-
vious work demonstrating the ability of humans
and animals to adapt rapidly to new information in
a ‘meta-learning’ setting (Wang et al., 2018). We
next investigated the time participants spent think-
ing during the exploitation phase. We estimated
the ‘thinking time’ for each action as the posterior
mean under a probabilistic model that decomposes
the total response time for each action (Figure 2B;
top) into the sum of the thinking time (Figure 2B;
bottom) and a perception-action delay. The prior
distribution over perception-action delays was es-
timated for each individual using a separate set of
trials, where participants were explicitly cued with
the optimal path and thus did not have to plan a
route themselves (Methods; Figure S1). Since the
first step within each trial required participants to
parse their new position in the maze, a separate
prior was fitted for the first action in a trial.

Participants exhibited a wide distribution of think-
ing times during the exploitation phase of the task
(Figure 2B; bottom). To reveal any task-related
structure in this variability, we partitioned thinking
times by within-trial action number and by distance
to goal (Figure 2C). We found that participants ex-
hibited longer thinking times when further from
the goal, consistent with planning of longer routes
taking more time. Furthermore, subjects exhibited
substantially longer thinking times for the first ac-
tion of each trial (Figure S2), consistent with them
having to initially plan a new route to the goal.
These patterns confirm that the broad marginal
distribution of thinking times (Figure 2B) does not
simply reflect a noisy decision-making process or
task-irrelevant distractions. On the contrary, vari-
ability in thinking time is an important feature of
human behavior that reflects the variable moment-
to-moment cognitive demands for decision making.

A recurrent network model of planning

To model the rapid adaptation and the detailed pat-
terns of thinking times displayed by human subjects,
we considered an RNN model trained in a meta-
reinforcement learning setting (Figure 1A; Methods;
Duan et al., 2016; Wang et al., 2016, 2018; see Sup-
plementary Note for a more in-depth discussion and

motivation of our modeling choices). The RL agent
consisted of 100 gated recurrent units (GRUs; Cho
et al., 2014; Figure S3) and was characterized by
a time-varying internal activation state hj, which
evolved dynamically according to

hi. = ¢g(xi, hi—1) (1)
Yr = Co(hy). (2)

Here, 6 denotes the set of all model parameters,
x; are momentary inputs to the RNN, and y; are
momentary network outputs computed from the
current state hy, which was reset at the beginning
of each episode. k indexes the evolution of the
network dynamics and can in general be different
from the wallclock time ¢ in agents that have the
ability to ‘think’ for variable periods of time (see be-
low). Inputs consisted of the current agent location
si, the previous action taken a;_; and associated
reward signal r;_1, the elapsed time ¢ since the
beginning of the episode, and the locations of all
walls (Methods). Thus, while the reward location
was hidden and had to be both discovered and
memorized, the rest of the environment was fully
observed. Outputs consisted primarily of a policy
mo(ax|hy), i.e. a set of probabilities associated with
each possible action, which depended on the current
hidden state of the RNN. At each step, an action
ar, was sampled from this distribution and triggered
changes in the environment v according to:

Thi1, Skt1 = Y(ag, S). (3)

This yielded both a new location siy1 of the agent
and the new inputs @11, which were fed back to
the agent on the subsequent iteration (Figure 1A).
In addition to the policy, the output of the agent
included a value function and predictions of the
new location and current goal location.

As in standard RL settings, we quantified the per-
formance of the agent in a given environment as
the expected total reward,

K
J(0) =E,, lz rk] ) (4)
k=1

Training proceeded by gradually adjusting the pa-
rameters 6 to maximize the average J(6) across
environments, using a policy gradient algorithm
(Methods; Sutton and Barto, 2018; Wang et al.,
2018). In Equation 4, K refers to the total number
of iterations in an episode, with each episode ter-
minating once t exceeded the episode duration of
T = 20 seconds as in the human data (Figure 1B).
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Since our agent had no intrinsic notion of wallclock
time, we considered each discrete action to con-
sume At = 400 ms, meaning that there was time
for 50 actions in a single RL episode. This was
calculated to approximately match the number of
actions taken in a typical RL episode to the human
data. In this canonical formulation, the RL agent
always takes an instantaneous action in response to
a given set of inputs. It therefore does not have any
ability to perform temporally extended planning,
implying constant (zero) ‘thinking time’ in all situa-
tions. As a consequence, such a canonical meta-RL
agent cannot explain the salient patterns of think-
ing times observed in human participants (recall
Figure 2C). At first glance, temporally extended
planning might also appear unnecessary in the RL
agent, since it already has access to the current
state, wall configuration, and reward information
needed for decision making. However, this was also
the case for our human participants, who chose to
spend time thinking nonetheless. We hypothesized
that the RL agent could similarly benefit from the
ability to trade off time for additional processing of
the available information in difficult tasks, where
the agent has not learned a perfect policy (Hamrick
et al., 2017; Pascanu et al., 2017).

To investigate the effect of such thinking for recur-
rent meta learners and account for the observed
variability in human thinking times, we augmented
the RL agent with the ability to perform temporally
extended planning in the form of imagined policy
rollouts. Specifically, we expanded the action space
of the agent to give it the option of sampling a
hypothetical trajectory from its own policy at any
moment in time (a ‘rollout’; Figure 1A; Hamrick
et al., 2017; Pascanu et al., 2017). In other words,
the agent was allowed to either perform a physical
action, or to perform a mental simulation of its
policy. If the agent chose to perform a rollout, a
flattened array of the imagined action sequence was
fed back to the network as additional inputs on the
subsequent time step, together with an indication
of whether or not the simulated action sequence
reached the goal. These inputs in turn affected the
policy by modulating hj through a set of learnable
input weights (Figure 1A). This is reminiscent of
canonical RL algorithms that change their param-
eters 0 to yield a new and improved policy on the
basis of trajectories sampled from the current policy.
In our formulation of planning, the agent’s policy is
instead induced by the hidden state hj, which can
similarly be modulated on the basis of the imagined
policy rollouts to improve performance.

Each rollout was terminated either upon reaching
the goal, or after a maximum duration of 8 simu-
lated actions (see Figure S3 for different network
sizes and maximum planning horizons). Impor-
tantly, both the generation of a mental rollout and
the corresponding success feedback relied on an
internal model of the environment that was ob-
tained from the agent itself. This internal model
was trained alongside the RNN and the policy, by
learning to predict the reward location and state
transitions from the momentary hidden state of
the RNN (h;) and the action taken (ay; Meth-
ods; Figure S4). Thus, rollouts did not provide
the agent with any privileged information that it
did not already possess. Instead, they allowed the
agent to trade off time for additional computational
capacity — similar to thinking in humans and other
animals. Furthermore, to capture the fact that men-
tal simulation is faster than physical actions (Liu
et al., 2019; Kurth-Nelson et al., 2016), we assumed
each full rollout to consume only 120 ms. In other
words, a single iteration of the network dynamics
(k — k + 1 in Equation 1) incremented time by
120 ms if the agent chose to perform a rollout and
400 ms if the agent chose a physical action. This al-
lowed the agent to perform many simulated actions
in the time it would take to physically move only a
short distance (Agrawal et al., 2022). Importantly,
since an episode had a fixed duration of 20 seconds,
choosing to perform more rollouts had a temporal
opportunity cost by leaving less time for physical
actions towards the goal.

Biologically, we interpret these mental simulations
as prefrontal cortex (the RNN) interacting with the
hippocampal formation (the world model), which
allows the agent to simulate a sequence of state
transitions from the current policy and evaluate
their consequences. Importantly, while we endowed
the agent with the ability to perform policy rollouts,
we did not build in any prior knowledge about when,
how, or how much they should be used. The agent
instead had to learn this over the course of train-
ing on many different environments. Therefore,
while the rollouts phenomenologically resembled
hippocampal forward replays by design, our compu-
tational model allowed us to investigate (i) whether
and how such rollouts can drive policy improve-
ments, (ii) whether their temporal patterns can
explain human response times, and (iii) whether bi-
ological replays appear to be implementing a similar
computation.

The RL agent was trained by slowly adjusting its pa-
rameters 0 over 8 x 10% episodes, sampled randomly
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Figure 2: Trained RL agents perform more rollouts in situations where humans spend longer
thinking. (A) Performance — quantified as the number of actions needed to reach the goal — as a function
of trial number within each episode, computed for both human participants (black) and RL agents (blue).
Shading indicates standard error of the mean across human participants (n = 94) or RL agents (n = 5)
and mostly falls within the interval covered by the solid lines. Gray line indicates optimal performance,
computed separately for exploration (trial 1) and exploitation (trials 2-4; Methods). (B) Distribution of
human response times (top) and thinking times (bottom), spanning ranges on the order of a second (Methods).
(C) Human thinking time as a function of the step-within-trial (x-axis) for different initial distances to the
goal at the beginning of the trial (lines, legend). Shading indicates standard error of the mean across 94
participants. Participants spent more time thinking further from the goal and before the first action of each
trial (Figure S2). (D) Model ‘thinking times’ separated by time-within-trial and distance-to-goal, exhibiting
a similar pattern to human participants. To compute thinking times for the model, each rollout was assumed
to last 120 ms as described in the main text. Shading indicates standard error of the mean across 5 RL agents.
(E) Binned human thinking time as a function of the probability that the agent chooses to perform a rollout,
m(rollout). Error bars indicate standard error of the mean within each bin. Gray horizontal line indicates a
shuffled control, where human thinking times were randomly permuted before the analysis. (F) Correlation
between human thinking time and the regressors (i) 7(rollout) under the model, (ii) distance-to-goal, and
(iii) m(rollout) after conditioning on distance-to-goal (‘residual’; Methods). Bars and error bars indicate mean
and standard error across human participants (n = 94).

from 2.7 x 10® possible environment configurations. Human thinking times correlate with agent
This implied that the majority of environments seen rollouts

at test time would be novel to the agent, requir-
ing generalization across tasks. Parameter adjust-
ments followed the gradient of a cost function that
combined terms designed to (i) maximize the ex-
pected reward in Equation 4, (ii) learn the internal
model by accurately predicting the reward location
and state transitions, and (iii) minimize a standard
entropy cost to encourage exploration (Methods;
Wang et al., 2016). Importantly, parameters were
frozen after training, and the agent adapted to the
wall configuration and goal location of each new
environment using only internal network dynamics
(Wang et al., 2018; Duan et al., 2016).

Having specified our computational model of plan-
ning, we analyzed its behavior and compared it to
that exhibited by humans. We trained 5 copies of
our RL agent to solve the same task as the human
participants and found that the agents robustly
learned to navigate the changing maze. Similar to
humans, the trained agents exhibited a rapid tran-
sition from exploration to exploitation upon finding
the reward, reaching near-optimal performance in
both phases (Figure 2A, blue). This confirmed that
these RNNs are capable of adapting to changing
environments using only internal network dynamics
with fixed parameters, corroborating previous work
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on recurrent meta-RL (Wang et al., 2018; Duan
et al., 2016; Banino et al., 2018). The trained net-
works also used their capacity to perform rollouts,
choosing to do so approximately 30% of the time.
Importantly, there was temporal variability in the
probability of performing a rollout, and the net-
works sometimes performed multiple successive roll-
outs between consecutive physical actions. When
we queried the conditions under which the trained
agents performed these rollouts, we found strik-
ing similarities with the pattern of human thinking
times observed previously. In particular, the RL
agent performed more rollouts earlier in a trial and
further from the goal (Figure 2D) — situations where
the human participants also spent more time think-
ing before taking an action (Figure 2C). On average,
thinking times in the RL agent were approximately
50 ms lower than in humans. This difference could
e.g. be due to (i) the choice of prior in the proba-
bilistic model used to infer human thinking times,
(ii) the agent having a better ‘base policy’ than
humans, or (iii) the hyperparameters determining
the temporal cost of planning.

To further study the relationship between rollouts
and human ‘thinking’, we simulated the RL agent
in the same environments as the human partici-
pants. We did this by clamping the physical actions
of the agent to those taken by the participants,
while still allowing it to sample on-policy rollouts
(Methods). In this setting, the agent’s probability
of choosing to perform a rollout when encounter-
ing a new state, m(rollout), was a monotonically
increasing function of human thinking time in the
same situation (Figure 2E). The Pearson correlation
between these two quantities was r = 0.186 4 0.007
(mean + sem across participants), which was sig-
nificantly higher than expected by chance (Fig-
ure 2F, ‘m(rollout)’; chance level r = 04-0.004). An
above-chance correlation between thinking times
and m(rollout) of » = 0.070 & 0.006 persisted af-
ter conditioning on the distance-to-goal (Figure 2F,
‘residual’), which was also correlated with thinking
times (r = 0.272 4 0.006). The similarity between
planning in humans and RL agents thus extends
beyond this salient feature of this task, including
an increased tendency to plan on the first step of a
trial (Figure S2).

In addition to the similarities during the exploitation
phase, a significant correlation was also observed
between human thinking time and w(rollout) dur-
ing exploration (r = 0.098 £ 0.008). In this phase,
both humans and RL agents spent more time think-
ing during later stages of exploration (Figure S5).

Model rollouts during exploration corresponded to
planning towards an imagined goal from the pos-
terior over goal locations, which becomes narrower
as more states are explored (Figure S5). This find-
ing suggests that humans may similarly engage
in increasingly goal-directed behavior as the goal
posterior becomes narrower over the course of ex-
ploration. Taken together, our results show that a
meta-reinforcement learning agent, endowed with
the ability to perform rollouts, learns to do so in
situations similar to when humans appear to plan.
This provides a putative normative explanation for
the variability in human thinking times observed in
the dynamic maze task.

Rollouts improve the policy of the RL agent

In the previous section, we saw that an RL agent
can learn to use policy rollouts as part of its decision
making process, and that the timing and number of
rollouts correlates with variability in human think-
ing times. In this section, we aim to understand
why the agent chooses to perform rollouts and how
they guide its behavior. To do this, we considered
the agent right after it first located the goal in
each episode (i.e., at the first time step of trial 2;
Figure 1B) and forced it to perform a pre-defined
number of rollouts, which we varied. We then quan-
tified the number of actions that the agent took
to return to the goal while preventing any further
rollouts during this return phase (Methods).

The average number of actions needed to reach
the goal decreased monotonically as the number
of forced rollouts increased up to at least 15 roll-
outs (Figure 3A). Interestingly, this was the case
despite the unperturbed behavior of the agent rarely
including more than a few consecutive rollouts (Fig-
ure 2D), suggesting that the agent learned a robust
algorithm for policy optimization on the basis of
such rollouts (Schrittwieser et al., 2020; Hamrick
et al., 2017). The increase in performance with roll-
out number was also associated with a concomitant
decrease in policy entropy (Figure 3B). Thus, per-
forming more rollouts both improved performance
and increased the agent’s confidence in its actions
(Methods). These findings confirm that the agent
successfully learned to use policy rollouts to opti-
mize its future behavior. However, the question
remains of whether this policy improvement is ap-
propriately balanced with the temporal opportunity
cost of performing a rollout.

In general, performing a rollout is beneficial in situ-
ations where the policy improvement resulting from
the rollout is greater than the temporal cost of 120
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Figure 3: Rollouts improve the network policy. (A) Performance on trial 2 as a function of the number
of rollouts enforced at the beginning of the trial. Performance was quantified as the average number of
steps needed to reach the goal in the absence of further rollouts. Gray horizontal line indicates optimal
performance. (B) Policy entropy as a function of the number of rollouts enforced at the beginning of trial 2.
The entropy was computed after re-normalizing the policy over the four ‘physical’ actions, and the horizontal
gray line indicates the entropy of a uniform policy. (C) Original performance of the RL agent (left) and its
performance when re-normalizing the policy over physical actions to prevent any rollouts (right). Performance
was quantified as the average number of rewards collected per episode, and dashed lines indicate individual
RL agents, while the solid line indicates mean and standard error across agents. (D) Schematic showing
an example of a ‘successful’ (dark blue) and an ‘unsuccessful’ (light blue) rollout from the same physical
location (blue circle). Black cross indicates the goal location (not visible to the agent or human participants).
(E) Probability of taking the first simulated action of the rollout, é;, before (7P*(a;)) and after (7P°'(a;))
the rollout. This was evaluated separately for successful (left) and unsuccessful (right) rollouts. 7P*(a;) was
above chance (gray line) in both cases and increased for successful rollouts, while it decreased for unsuccessful
rollouts. Error bars represent standard error across five independently trained agents. The magnitude of the
change in 7(d;) for successful and unsuccessful rollouts depended on the planning horizon (Figure S3).

ms of performing the rollout. To investigate whether
the agent learned to trade off the cost and benefit
of rollouts (Hamrick et al., 2017; Pascanu et al.,
2017; Agrawal et al., 2022), we computed the per-
formance of the agent in a surrogate environment
where rollouts were not allowed. In this setting,
each action was instead sampled from the distribu-
tion over physical actions only (Methods). When
preventing rollouts in this way, the agent only col-
lected 6.54 + 0.11 rewards per episode compared to
7.544+0.03 in the presence of rollouts (mean + stan-
dard error across agents), confirming that it used
rollouts to increase expected reward (Figure 3C).
To investigate whether the temporal structure of
rollouts described in Figure 2 was important for
this performance improvement, we performed an
additional control, where the number of rollouts was
kept fixed for each environment, but their occur-
rence was randomized in time. In this case, perfor-
mance dropped to 6.75 4 0.04 rewards per episode,
confirming that the RL agent chose to use rollouts
specifically when they improved performance.

To further dissect the effect of rollouts on agent
behavior, we classified each rollout, 7 (a sequence
{@1,d2,...} of rolled-out actions), as being either
‘successful’ if it reached the goal according to the
agent’s internal world model, or ‘unsuccessful’ if

it did not (Figure 3D). We hypothesized that the
policy improvement observed in Figure 3A could
arise from upregulating the probability of following
a successful rollout and downregulating the proba-
bility of following an unsuccessful rollout. To test
this hypothesis, we enforced a single rollout after
the agent first found the reward and analyzed the
effect of this rollout on the policy, separating the
analysis by successful and unsuccessful rollouts. Im-
portantly, we could compare the causal effect of
rollout success by matching the history of the agent
and performing rejection sampling from the rollout
process until either a successful or an unsuccessful
rollout had occurred (Methods). Specifically, we
asked how the rollout affected the probability of
taking the first rolled-out action, a;, by comparing
the value of this probability before (7P*¢(d;)) and
after (mP°**(a1)) the rollout. wP*(a;) was slightly
higher for successful rollouts than unsuccessful roll-
outs, with both types of rollouts exhibiting a sub-
stantially higher-than-chance probability — a conse-
quence of the model rollouts being drawn ‘on-policy’
(Figure 3E). However, while successful rollouts in-
creased 7(ay), unsuccessful rollouts decreased m(dy)
(Figure 3E). This finding demonstrates that the
agent combines the spatial information of a rollout
with knowledge about its consequences, based on
its internal world model, to guide future behavior.
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Hippocampal replays resemble policy roll-
outs

In our computational model, we designed policy
rollouts to take the form of spatial trajectories that
the agent could subsequently follow, and to occur
only when the agent was stationary. These two
properties are also important signatures of forward
hippocampal replays — patterns of neural activity
observed using electrophysiological recordings from
rodents during spatial navigation (Pfeiffer and Fos-
ter, 2013; Widloski and Foster, 2022; Gillespie et al.,
2021). Our model therefore allowed us to investi-
gate whether forward replay in biological agents
serve a similar function during decision making to
the function of policy rollouts in our RL agent. Ad-
ditionally, since we have direct access to the agent’s
policy and how it changes after a replay, our compu-
tational model can provide insights into the appar-
ently conflicting data and contradictory viewpoints
in the literature regarding the role of hippocampal
replays. In particular, some studies have found a
significant correlation between forward replay and
subsequent behavior (Pfeiffer and Foster, 2013; Fos-
ter, 2017; Widloski and Foster, 2022), arguing that
such a correlation suggests a role of forward replay
for planning. On the contrary, other studies have
found that forward replays do not always resemble
subsequent behavior (Gillespie et al., 2021; Krause
and Drugowitsch, 2022; Wu et al., 2017), challeng-
ing the interpretation of forward replay as a form
of planning. Our model offers a potentially concil-
iatory explanation, predicting that the correlation
between forward replay and subsequent behavior
can be positive or negative, depending on the re-
played trajectory (Figure 3E; Jai and Frank, 2015;
Antonov et al., 2022).

To investigate whether there is evidence for such
replay-based modulation of animal behavior, we re-
analyzed a recently published hippocampal dataset
from rats navigating a dynamic maze very similar to
the task in Figure 1B (Widloski and Foster, 2022).
Our goal was to compare the recorded replay events
to the policy rollouts exhibited by the RL agent,
considering both the statistical properties of the re-
plays themselves and how they relate to subsequent
behavior. In this rodent experiment, animals had
to repeatedly return to an initially unknown ‘home’
location, akin to the goal in our task (Figure S6).
Both this home location and the configuration of
the maze changed between sessions. Whilst the
behaving animals could not be ‘teleported’ between
trials as in our task, rats instead had to navigate
to an unknown rewarded ‘away’ location selected

at random after each ‘home’ trial. These ‘away’
trials served as a useful control since the animals
did not know the location of the rewarded well at
the beginning of the trial.

We studied replay events detected in hippocam-
pal recordings made with tetrode drives during the
maze task (n € [187,333] simultaneously recorded
neurons per session; Figure S6C). To detect replays,
we followed Widloski and Foster (2022) and first
trained a Bayesian decoder to estimate the animal’s
position on a discretized grid from the neural data
during epochs when the animal was moving. We
then applied this decoder during epochs when the
animal was stationary at a reward location before
initiating a new trial and defined replays as consec-
utive sequences of at least three adjacent decoded
grid locations (Figure 4A; Figure S6; see Methods
for details).

Similar to previous work (Widloski and Foster,
2022), we found that the hippocampal replays
avoided passing through walls to a greater extent
than expected by chance (Figure 4B; p < 0.001,
permutation test). This finding suggests that hip-
pocampal replays are shaped by a rapidly updated
internal model of the environment, similar to how
forward rollouts in our RL agent are shaped by
its internal world model (Figure 1A). Additionally,
the goal location was overrepresented in the hip-
pocampal replays, consistent with the assumption
of on-policy rollouts in the RL agent (Figure 4C;
p < 0.001, permutation test; Widloski and Foster,
2022).

Inspired by our findings in the RL agent, we pro-
ceeded to investigate whether a replayed action was
more likely to be taken by the animal if the replay
was successful than if it was unsuccessful. Here, we
defined a ‘successful’ replay as one which reached
the goal location without passing through a wall
(Figure 4A). Consistent with the RL model, we
found that the first simulated action in the replay
agreed with the next physical action more often for
successful replays than for unsuccessful replays (Fig-
ure 4D, black; p < 0.001, permutation test). Such
an effect was not observed in the ‘away’ trials (Fig-
ure 4D, gray; p = 0.129, permutation test), where
the animals had no knowledge of the reward loca-
tion and therefore could not know what constituted
a successful replay. These findings are consistent
with the hypothesis that successful replays should
increase the probability of taking the replayed ac-
tion, while unsuccessful replays should decrease this
probability.
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Figure 4: Hippocampal replays resemble model rollouts. (A) Illustration of experimental task
structure and example replays (Widloski and Foster, 2022). Each episode had a different wall configuration
and a randomly sampled home location (cross). Between each ‘home’ trial, the animal had to move to
an ‘away’ location, which was sampled anew on each trial (black circles). Colored lines indicate example
replay trajectories originating at the blue dots. Replays were detected during the stationary periods at
the away locations before returning to the home location and classified according to whether they reached
the home location (dark vs. light blue lines). (B) Fraction of replay transitions that pass through a wall
in the experimental (black) and model (blue) data. Control values indicate the fraction of wall crossings
in re-sampled environments with different wall configurations. Dashed lines indicate individual animals or
RL agents, and solid lines indicate mean and standard error across animals or RL agents. (C) Fraction of
replays that pass through the goal location in experimental (black) and model (blue) data. Control values
indicate the average fraction of replays passing through a randomly sampled non-goal location. Dashed
and solid lines are as in (B). See Figure S7 for an analogous analysis of the away trials, where the goal was
unknown. (D) Probability of taking the first replayed action, p(a; = a;), for successful and unsuccessful
replays during home trials (left; black), away trials (center; gray), and in the RL agent (right; blue). Bars
and error bars indicate mean and standard error across sessions or RL agents. (E) Over-representation of
successful replays during trials with at least three replays in the experimental data (left) and RL agents (right).
The over-representation increased with replay number; an effect not seen in the away trials (Figure S7).
Over-representation was computed by dividing the success frequency by a reference frequency computed for
randomly sampled alternative goal locations. Error bars indicate standard error across replays pooled from
all animals (left) or standard error across five independently trained agents (right; dashed lines).

In the RL agent, we have direct access to the mo- replay improves the policy, then consecutive replays
mentary policy and could therefore quantify the should become increasingly successful even in the
causal effect of a replay on behavior (Figure 3E). absence of any behavior between the replays.

However, in the biological circuit, we cannot know
whether the increased probability of following the
first action of a successful replay is because the
replay altered the policy (as in the RL agent), or
whether the replay reflects a baseline policy that
was already more likely to reach the goal prior
to the replay. To circumvent this confound, we
analyzed consecutive replays while the animal re-
mained stationary. If our hypotheses hold, that (i)
hippocampal replays resemble on-policy rollouts of
an imagined action sequence, and (ii) performing a

To test this prediction, we considered trials where
the animal performed a sequence of at least 3 re-
plays at the ‘away’ location before moving to the
‘home’ location. We then quantified the fraction
of replays that were successful as a function of the
replay index within the sequence, after regressing
out the effect of time (Methods; Olafsdéttir et al.,
2017). We expressed this quantity as the degree
to which the true goal was over-represented in the
replay events by dividing the fraction of successful
replays by a baseline calculated from the remaining
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non-goal locations, such that an over-representation
of 1 implies that a replay was no more likely to be
successful than expected by chance. Compellingly,
this over-representation increased with each consec-
utive replay during the home trials (Figure 4E; left),
and both the second and third replays exhibited
substantially higher over-representation than the
first replay (p = 0.068 and p = 0.009 respectively;
permutation test; Methods). Such an effect was not
seen during the away trials, where the rewarded
location was not known to the animal (Figure S7).

These findings are consistent with a theory in which
replays represent on-policy rollouts that are used
to iteratively refine the agent’s policy, which in
turn improves the quality of future replays — a phe-
nomenon also observed in the RL agent (Figure 4E,
right). In the RL agent, this effect could arise in
part because the agent is less likely to perform an
additional rollout after a successful rollout than
after an unsuccessful rollout (Figure S8). To elimi-
nate this confound, we drew two samples from the
policy each time the agent chose to perform a roll-
out, and we used one sample to update the hidden
state of the agent, while the second sample was used
to compute the goal over-representation (Methods).
Such decoupling is not feasible in the experimental
data, since we cannot read out the ‘policy’ of the
animal. This leaves open the possibility that the
increase in goal over-representation with consecu-
tive biological replays is in part due to a reduced
probability of performing an additional replay after
a successful replay. However, we note that (i) the
rodent task was not a ‘reaction time task’, since a
5-15 s delay was imposed between each trial. This
makes a causal effect of replay success on the total
number of replays less likely. (ii) if such an effect
does exist, that is in itself consistent with a theory
in which hippocampal replays guide planning.

RL agents use rollouts to optimize their hid-
den state

We have now seen that both biological and artificial
agents appear to use policy rollouts to influence
behavior in a way that depends on the content of
the rollout. However, it remains to be understood
(i) whether such an algorithm formally increases
the expected reward, and (ii) how it is implemented
mechanistically — a question we can address in the
trained RL agent. In this section, we show that
our theory has a firm theoretical grounding and
makes quantitative predictions about the neural
implementation of planning in PFC. Previously, we
showed that the agent up- or downregulated the
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probability p(r = 7) of actually performing a rolled-
out sequence 7 depending on the ‘goodness’ of the
rollout (Figure 3E). This is reminiscent of canonical
policy-gradient RL algorithms. These algorithms
consider putative on-policy action sequences 7 and
apply parameter updates that cause p(7) to increase
under the agent’s policy if 7 led to more reward than
expected, and to decrease otherwise. In our trained
agent, adaptation to each new maze does not in-
volve modifications of the fixed network parameters
but instead occurs through changes to the hidden
state hg. We therefore hypothesized that the perfor-
mance improvements resulting from policy rollouts
(Figure 3A; Figure 4E) were achieved through iter-
ative modifications of hj that approximated policy
gradient ascent on the expected future reward in
the episode as a function of hj (Figure 5A).

To test this hypothesis, we considered each rollout
performed by the RL agent and computed both (i)
the actual hidden state update performed by the
RL agent on the basis of this rollout, and (ii) the ex-
pected hidden state update computed by applying
the policy gradient algorithm to the same rollout
(Figure 5B; Methods). Our theory predicts that
rollouts should change hj in a way that increases
p(T = 7) if the rollout is better than some baseline
and decreases p(t = 7) otherwise. Since we do not
know the baseline, we performed our analysis by
taking the derivative of the hidden state change
with respect to the expected reward from physi-
cally following 7, R;, which is independent of the
baseline (Methods). This allowed us to define (i)

a quantity ot = aggf’c that predicts how the
hidden state should change as a function of R: in

the policy gradient formulation, and (ii) the corre-

sponding quantity a®NN = 8%’;:NN that indicates

how the hidden state actually chaflged as a function
of the content of the rollout. If the agent performs
approximate policy gradient ascent in hidden state
space, a*NN should be aligned with aFC.

To investigate whether the response of the RNN
to a rollout was consistent with this theory, we be-
gan by considering the effect on its hidden state of
the first action in the rollout, a;. We did this by
querying the alignment between (i) a®N computed
across rollouts from 1,000 episodes, and (i) al'“
computed from the same rollouts when considering
only the probability of executing a;. To visualize
this alignment, we performed PCA on {a}¢} from
all rollouts and projected both af'“ and o™ N into
this low-dimensional subspace. We then computed
the average of each of these two quantities for each
simulated action d; € {left, right, up,down}. We
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Figure 5: Rollouts implement a hidden state optimization. (A) The hidden state hj of the RNN
induces a policy with an expected future reward for the current episode. Rollouts can improve performance
by shifting h to a region of state space with higher reward (h; — hE"N). The policy gradient algorithm
estimates the direction of steepest ascent of the expected reward (h; — h5%). (B) We wanted to compare this
theoretical hidden state update AR := hYG —h; to the empirical hidden state update ARRNN .= RRNN _p,
actually performed by the network dynamics on the basis of a rollout 7 and its associated reward R;. (C) A
latent space was defined by performing PCA on aP® - the effect of R; on h;, under the policy gradient
algorithm. Solid lines and circles indicate the normalized average al'“ for each of the four possible simulated
actions (ay; colors). Dashed lines indicate the normalized average value of a®N for the corresponding action,
which is aligned with al'¢ in accordance with the theory. The first 3 PCs capture 100% of the variance in
oG since the policy is normalized and therefore only has three degrees of freedom. (D) Average cosine
similarity between a® N and a!®, quantified in the space spanned by the top 3 PCs of aP'® (see text for
details). a®N was computed using the true input, while a?tlr\}lN was computed after altering the feedback
from the rollout to falsely inform the agent that it had simulated a different action @1 ¢¢r1 # G1. This confirms
that the observed alignment is mediated by the input from the rollout. Left panel considers the effect of R
on the first action (a}“) and right panel considers the effect of R; on the second action (a5%). (E) We
trained networks of different sizes (legend) and quantified both their performance (x-axis) and frequency of
performing a rollout (y-axis) over the course of training (Figure S9). To reach a given performance, we found
that smaller networks relied more on rollouts, suggesting that the RL agents learn to plan in part because
they are capacity limited. Additionally, the agents learned to rely less on rollouts late in training as they
became increasingly good at the task, suggesting that they also plan because they are data limited.

found that the average value of a®N was strongly NN computed after changing the feedback input
aligned with the average value of o} for each to falsely inform the agent that it simulated a dif-
action (Figure 5C), consistent with the theory out- ferent action @i ct;1 # G1, the corresponding value
lined above. Importantly this means that R; has was d = —0.11 £ 0.004. This confirms that hy is
different effects on the policy depending on the re- optimized by incorporating the specific feedback
played trajectory 7. In other words, the spatial input obtained from the rollout, and the negative
content of the rollout dynamically modulates the sign reflects anti-correlations due to the policy being
way in which the reward signal from the rollout a normalized distribution over actions. For these
affects the hidden state and policy of the agent. analyses, we only considered the first simulated ac-

To quantify the overlap between o™~ and o€ on tion a;. When instead querying the effect of the

. rollout on subsequent actions in 7, we found that
a rollout-by-rollout basis, we computed the average the feedback input | ted th I th
cosine similarity d between a®NN PG ¢ feedback Iput was also propagated LATough the

and a7~ across twork d ics to these lat tions (Fi 5D
all rollouts. This overlap was substantially larger PELWOTK Cynamics to these atet actions \Figure oF,
right). These analyses confirm that policy rollouts

than zero (d = 0.39 £ 0.01 mean + sem; Figure 5D, : . )
left). When instead computing the overlap with consistently move the hidden state of the agent in
the direction of the policy gradient.
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Discussion

We have developed a new theory of planning in the
prefrontal-hippocampal network, implemented as a
recurrent neural network model and instantiated in
a spatial navigation task requiring multi-step plan-
ning (Figure 1). Our model consists of a recurrent
meta-reinforcement learning agent augmented with
the explicit ability to plan using policy rollouts.
We showed that this model provides a compelling
account of human behavior in our task, where it
explains the structure observed in human think-
ing times (Figure 2). These results suggest that
planning using mental rollouts could constitute a
major component underlying the striking human
ability to adapt rapidly to new information and
changing environments, where it allows agents to
refine their behavior without incurring the poten-
tially large cost of overtly executing suboptimal
actions. Since mental simulation is generally faster
and more efficient than physically interacting with
the world (Vul et al., 2014), this allows agents to
improve their overall performance despite the tem-
poral opportunity cost of such simulation (Figure 3;
Agrawal et al., 2022; Hamrick et al., 2017).

Our theory also suggests an important role of hip-
pocampal replays during sequential decision making.
By re-analyzing recordings from the rat hippocam-
pus during a navigation task, we found that patterns
of hippocampal replays and their relationship to
behavior resembled the rollouts used by our model
(Figure 4). These results suggest that hippocam-
pal forward replays could be a manifestation of
a planning process, and that the mechanistic in-
sights derived from our model could generalize to
biological circuits. In particular, we hypothesize
that forward replays should have different effects
on subsequent behavior depending on whether they
lead to high-value or low-value states (Figure 3; Wu
et al., 2017). This hypothesis is consistent with
previous models, where hippocampal replay is used
to update state-action values that shape future be-
havior (Mattar and Daw, 2018). We suggest that
forward replay implements planning through feed-
back to prefrontal cortex that drives a ‘hidden state
optimization’ reminiscent of recent models of motor
preparation (Figure 5; Kao et al., 2021). This differs
from prior work in the reinforcement learning liter-
ature, since our model does not involve arbitration
between model-free and model-based policies com-
puted separately (Daw et al., 2005; Geerts et al.,
2020). Instead, model-based computations itera-
tively update a single policy that can be used for
decision making at different stages of refinement.
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Neural mechanisms of planning and decision
making

Our model raises several interesting hypotheses
about neural dynamics in hippocampus and pre-
frontal cortex and how these dynamics affect be-
havior. One is that hippocampal replays should
causally affect the behavior of an animal as also
suggested in previous work (Foster, 2017; Pfeiffer
and Foster, 2013; Widloski and Foster, 2022). How-
ever, as noted previously (Figure 4), this has been
notoriously difficult to test in experiments due to
the confound of how the behavioral intentions of
the animal itself affect the content of hippocampal
replays (Foster, 2017). Perhaps more interestingly,
we predict that hippocampal forward replays should
directly drive a change in PFC representations, con-
sistent with previous work showing coordinated ac-
tivity between hippocampus and PFC during sharp-
wave ripples (Jadhav et al., 2016). Crucially, we
also predict how PFC representations should change
during planning depending on the spatial content
and expected reward of a replay. These predictions
could be investigated in experiments that record
neural activity simultaneously from hippocampus
and PFC, where both the timing and qualitative
change in PFC representations can be related to
the occurrence of replays in hippocampus.

To enable more detailed mechanistic predictions,
our model could be extended in several ways. First,
we have modeled the prefrontal network as a single
fully connected network. In contrast, the brain re-
lies on several connected but distinct circuits, all of
which serve specialized functions that together give
rise to the representations and dynamics driving
human behavior. To understand these collective
dynamics, it will therefore be interesting to extend
our approach to modular models inspired by the
architecture of multi-area networks. Second, our
implementation of rollouts in the agent took the
form of an abstract simulation process, where the
underlying neural dynamics were not explicitly mod-
eled. To better understand the mechanisms through
which PFC interacts with other brain areas during
planning, it will be important to model the whole
rollout process as multi-area neural dynamics. Fi-
nally, while we propose a role of hippocampal re-
plays in shaping immediate behavior via recurrent
network dynamics, this is compatible with replays
also having other functions, such as memory consol-
idation (van de Ven et al., 2016; Carr et al., 2011)
or dopamine-driven synaptic plasticity over longer
timescales (Gomperts et al., 2015; De Lavilléon
et al., 2015).
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Alternative planning algorithms

Planning in the RL agent was carried out explicitly
in the space of observations. While this was already
an abstract representation rather than pixel-level
input, it could be interesting to explore planning
in a latent space optimized e.g. to predict future
observations (Zintgraf et al., 2019) or future policies
and value functions (Ho et al., 2022; Schrittwieser
et al., 2020). These ideas have proven useful in the
machine learning literature, where they allow mod-
els to ignore details of the environment not needed
to make good decisions, and it is plausible that the
internal model of humans similarly does not include
such task-irrelevant details. We also assumed that
the planning process itself was ‘on policy’ — that is,
the policy that was used to sample actions in the
planning loop was identical to the policy used to
act in the world. Although there is some support
from the hippocampal replay data that forward re-
plays are related to the ‘policy’ (e.g. wall avoidance
and goal over-representation; Figure 4), there is in
theory nothing that prevents the planning policy
from differing arbitrarily from the action policy. In
fact, the planning policy could even be explicitly
optimized to yield good plans rather than re-using
a policy optimized to yield good behavior (Pascanu
et al., 2017). Such off-policy hippocampal sequence
generation has also formed the basis of other recent
theories of the role of hippocampus in planning and
decision making (McNamee et al., 2021; Mattar
and Daw, 2018). In this case, the policy gradient
view of rollouts still provides a natural language for
formalizing the planning process, since numerous
off-policy extensions of the canonical policy gradi-
ent algorithm exist (Peshkin and Shelton, 2002; Jie
and Abbeel, 2010).

Why do we spend time thinking?

Finally, while both humans and our RL agents made
extensive use of planning, it is worth noting that
mental simulation does not generate any new in-
formation about the world. In theory, it should
therefore be possible to make equally good ‘reflex-
ive’ decisions given enough computational power.
This raises the question of why we rely on planning
in the first place — in other words, what is the reason
that decision making often takes time rather than
being instantaneous? One possible reason could be
that our decision making system is capacity limited,
such that it does not have enough computational
power to generate the optimal policy (Russek et al.,
2022). In our computational model, this is sup-
ported by the observation that agents consisting of
smaller RNNs tend to perform more rollouts than
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larger agents (Figure 5E). Alternatively, we could
be data limited, meaning that we have not received
enough training to learn the optimal policy. This
also has support in our computational model, where
networks of all sizes perform many rollouts early in
training, when they have only seen a small amount
of data, and gradually transition to a more reflex-
ive policy that relies less on rollouts (Figure 5E;
Figure S9).

We hypothesize that data limitations are a major
reason for the use of temporally extended planning
in animals. In particular, we reason that learning
the instantaneous mapping from states to actions
needed for reflexive decisions would require a pro-
hibitive amount of training data, which is generally
not available for real-life scenarios. Indeed, training
our meta-reinforcement learner required millions of
episodes, while humans were immediately capable
of solving the maze task from only a simple task
description and demonstration. Such rapid learning
could be due in part to the use of temporally ex-
tended planning algorithms as a form of ‘canonical
computation’ that generalizes across tasks. If this
is the case, we would be able to rely on generic
planning algorithms acquired over the course of
many previous tasks in order to solve a new task.
When combined with a new task-specific transition
function learned from relatively little experience
or inferred from sensory inputs, planning would
facilitate data-efficient reinforcement learning by
allowing the agent to trade off processing time for
a better policy (Schrittwieser et al., 2020). This
is in contrast to our current model, which had to
learn from scratch both the structure of the environ-
ment and how to use rollouts to shape its behavior.
Importantly, planning as a canonical computation
could generalize not just to other navigation tasks
but also to other domains, such as compositional
reasoning and sequence learning, where replay has
recently been demonstrated in humans (Liu et al.,
2019; Schwartenbeck et al., 2021; Liu et al., 2021).
Further exploring these ideas will be an exciting
avenue for future work.
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Figure S1: Overview of human data for all participants. (A) Mean reward per trial as a function
of the average response time during the guided trials (Methods). Each data point corresponds to a single
participant. (B) Mean reward per trial as a function of the average response time during the non-guided trials.
The strong negative correlation implies that participants on average got more reward when they acted faster,
confirming that participants who acted faster were not simply making random key presses. (C) Fraction
of actions that were consistent with an optimal policy as a function of mean response time, plotted for all
participants during the non-guided trials. There was a significant positive Pearson correlation between these
two quantities (r = 0.41; p < 0.0001, permutation test). This correlation confirms that participants who
thought for longer were not simply disengaged with the task, but that they instead invested the time to make
higher-quality decisions. (D) Mean of the log-normal distribution of perception-action delays fitted to data
from the guided episodes for each participant (dots) using either the first action within each trial (left) or all
other actions (right). These prior distributions were used to infer the thinking times in Figure 2.
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Figure S2: Thinking time and w(rollout) by distance to goal and step within trial. (A) Figure
illustrating the average thinking time across human participants as a function of distance to goal (x-axis),
conditioned on different steps within the trial (lines, legend). Subjects generally spent longer thinking before
the first action of each trial, after controlling for the distance to goal, while subsequent actions were associated
with similar thinking times. Lines and shadings indicate mean and standard error when repeating the analysis
across human participants (n = 94). (B) w(rollout) for the agent clamped to the human trajectory as a
function of distance to goal and for different steps within the trial. Similar to the human participants, the
agent had a higher probability of performing a rollout on the first step of each trial. Subsequent steps were
associated with similar rollout probabilities after controlling for the distance to goal. When conditioning on
both distance to goal and step within trial, the residual correlation between m(rollout) and thinking time
remained at a significantly positive value of r = 0.026 £+ 0.004 (mean + sem).
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Figure S3: Properties of networks with different hyperparameters. To investigate the robustness
of our results to the choice of network size (N) and planning horizon (L), we trained networks with each
combination of N € {60,100, 140} and L € {4,8,12} and repeated some of our key analyses. For all analyses,
we report mean and standard error across 5 networks with each set of hyperparameters. The results in the
main text are all reported for a network with N =100 and L = 8. (A) We quantified the correlation between
the network 7(rollout) and human response times across different networks (c.f. Figure 2F). x-ticks indicate
network size and planning horizon as (N, L). (B) We computed the improvement in the network policy
from performing 5 rollouts compared to the policy in the absence of rollouts (c.f. Figure 3A). The policy
improvement was quantified as the average number of steps needed to reach the goal on trial 2 in the absence
of rollouts, minus the average number of steps needed with 5 rollouts enforced at the beginning of the trial
and no rollouts during the rest of the trial. Positive values indicate that rollouts improved the policy. (C) We
investigated how rollouts changed the policy (c.f. Figure 3E). For each network, we computed the average
change in (1) from before a rollout to after a rollout and report this change separately for successful (‘succ’)
and unsuccessful (‘un’) rollouts. Positive values indicate that d; became more likely and negative values
that a; became less likely after the rollout. We observe that networks with longer planning horizons tend to
have less positive Am(a;) for successful rollouts and more negative Am(a;) for unsuccessful rollouts. This is
consistent with a policy gradient-like algorithm with a baseline that approximates the probability of success,
which increases with planning horizon. In other words, since longer rollouts are more likely to reach the goal,
we should expect them to be successful and not strongly update our policy when it occurs. On the contrary,
an unsuccessful rollout is less likely and should lead to a large policy change. The converse is true for shorter
planning horizons.
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Figure S4: Accuracy of the internal world model. (A) Accuracy of the internal transition model over
the course of training. Accuracy was computed as the probability that the predicted next state was the true
state reached by the agent, ignoring all teleportation steps where the transition cannot be predicted. The
accuracy was averaged across all timesteps from 1,000 episodes, and the line and shading indicate mean and
standard error across 5 RL agents. The upper panel considers the full range of [0, 1] while the lower panel
considers the range [0.99, 1.0]. We see that the transition model rapidly approaches ceiling performance,
although it continues to improve slightly throughout training. (B) Accuracy of the internal reward model
over the course of training. Accuracy was computed as the probability that the predicted reward location was
the true reward location during the exploitation phase of the task (see Figure S5 for an analysis of the model
accuracy during exploration). Lines and shadings indicate mean and standard error across 5 RL agents.
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Figure S5: Analyses of the exploration period in humans and RL agents. (A) At each point in time,
the agent outputs its belief over where the goal is located under its internal model, which was trained using a
cross-entropy loss (Methods). The figure shows the average probability assigned to the true goal, plotted as a
function of the number of unique states visited during the exploration phase of the task. As more states
are explored, the posterior over possible goals becomes narrower and prediction accuracy increases. When
the model chooses to perform a rollout, the imagined goal is chosen as the maximum likelihood location
from this posterior to predict the ‘success’ of the rollout. The figure illustrates that this imagined goal
becomes increasingly likely to be the true goal as the agent explores more of the environment. (B) Thinking
time of human participants during exploration, plotted as a function of m(rollout) for RL agents clamped to
the human trajectory. Bars and error bars indicate mean and standard error of the human thinking time
across all states where 7(rollout) fell in the corresponding bin. Gray line indicates a control where human
thinking times have been shuffled. The Pearson correlation between (rollout) and human thinking times
is r = 0.097 = 0.008, suggesting that the model captures some of the structure in human thinking during
exploration and not just during the exploitation phase. Note that the very first action of the episode was not
included in this or subsequent analyses of the human data. (C) Model thinking time as a function of the
number of unique states visited during the exploration phase of the task, with each rollout assumed to take
120 ms as specified in the main text and Methods. Line and shading indicate mean and standard error across
RL agents. The increase in thinking time with visited states mirrors the predictive performance from panel
(A) and suggests that the agent increasingly chooses to engage in ‘model-based’ planning as its uncertainty
over possible goal locations decreases. (D) Human thinking time as a function of the number of unique states
visited during the exploration phase of the task. Line and shading indicate mean and standard error across
participants. The increase in thinking time with states visited suggests that humans may also transition
to more model based behavior as the posterior over possible goal locations becomes narrower. A notable
difference from the computational model is found early in the exploration phase, where human thinking times
tend to decrease slightly over the first few unique state visits.
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Figure S6: Overview of rodent data. (A) Kernel density estimate (o = 3 trials) of the distribution of the
number of ‘home’ trials in each session across all animals (an equivalent number of away trials was performed
between the home trials). Dots indicate individual sessions. (B) Fraction of trials where the animal reached
the correct goal location and started licking within 5 seconds of the trial starting, separated by home and
away trials. Reaching the goal within 5 seconds was used as a success criterion by Widloski and Foster (2022)
since the goal is never explicitly cued at this time (Methods). Line and shading indicate mean and standard
error across sessions. The animals learn the location of the home well within a few trials and consistently
return to this location on the home trials. (C) Distribution of the number of recorded neurons in each session.
Line indicates a convolution with a Gaussian filter (15 neuron std) and dots indicate individual sessions. Note
that consecutive sessions on the same day (2-3 sessions per day) involved recording from the same neurons,
so there are fewer distinct data points than there are sessions. (D) Consistency of spatial tuning curves of
hippocampal neurons. Consistency was quantified by constructing two tuning curves on the 5x5 spatial grid
(Figure 4A) for each neuron and computing the Pearson correlation between the two tuning curves. The data
was split into either even/odd time bins in a session (left plot) or first/second half of the session (right plot)
to compute a pair of tuning curves. (E) Distribution of replay lengths, measured as the number of states
visited in a replay, for all replays during home (left) or away (right) trials. Note the log scale on the y-axis.
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Figure S7: Analysis of replays during away trials. (A) Fraction of replays reaching either the true
goal (left) or a randomly sampled alternative goal location (right) during away trials. In contrast to the
home trials (Figure 4C), the goal is not over-represented during away trials, where the goal location is
unknown. (B) Over-representation of replay success as a function of replay number within sequences of
replays containing at least 3 distinct replay events (c.f. Figure 4E). In contrast to the home trials, there is no
increase in over-representation with replay number during these away trials.
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Figure S8: Change in 7(rollout) for successful and unsuccessful rollouts. (A) m(rollout) before
(left) and after (right) successful rollouts. Bars and error bars indicate mean and standard error across
5 RL agents. The data used for this analysis was the same data used in Figure 3E. (B) As in (A), now
for unsuccessful rollouts. 7Pt (rollout) was substantially larger after unsuccessful than successful rollouts
(Am(rollout) = 0.10 + 0.01 mean =+ sem).
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Figure S9: Performance and rollouts as a function of network size. (A) We trained networks
of different sizes (legend; N € [60,80,100]) and quantified their performance over the course of training.
(B) Fraction of timesteps where the agent chose to perform a rollout over the course of training for different
network sizes. Note that the agents perform rollouts at chance level but with high variance at initialization,
and this data point was therefore not included in the analysis in Figure 5E, where we only considered the
learned rollout frequency from episode 800,000 onwards. It is interesting to note that the agents first learn to
suppress the rollout frequency below chance before increasing it to levels above chance. This is consistent
with a theory where rollouts only become useful when (i) an internal world model has been learned, and (ii)
the agent has learned how to use rollouts to improve its policy. Finally, rollouts become less frequent again
later in training as the base policy improves.
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Methods

Software

All models were trained in Julia version 1.7 using Flux and Zygote for automatic differentiation (Innes et al.,
2018). Human behavioral experiments were written in OCaml, with the front-end transpiled to javascript for
running in the participants’ browsers. All analyses of the models and human data were performed in Julia
version 1.8. All analyses of hippocampal replay data were performed in Python 3.8.

Statistics

Unless otherwise stated, all plots are reported as mean and standard error across human participants (n = 94),
independently trained RL agents (n = 5), or experimental sessions in rodents (n = 37).

Environment

We generated mazes using the following algorithm:

Algorithm 1: Maze generating algorithm

1 A < 4x4 arena with walls everywhere.

2 V < {} % empty initial set of visited states.

3 s < random starting location.

4

5 % Define function to walk through the maze and remove walls
6 Function walk maze(s, A, V)

7 V.add(s) % Add s to set of visited states
8 N + neighbors(s) % Neighbors of s, including those through the periodic boundaries
9 % Iterate through all neighboring states in random order
10 for n € randomize(N ) do
11 % If we reached a state we have not seen before
12 if n ¢V then
13 A.remove_wall(s, n) % Remove wall between s and n from arena
14 L A, V = walk _maze(n, A, V) % Continue from new state
15 return A, V
16
17 A,V = walk_maze(s, A, V) % Construct maze using our recursive algorithm
18

19 %Remove 3 additional walls at random to increase the degeneracy of the tasks.
20 %This increases the number of decision points with multiple routes to the goal.
21 for i = 1:3 do

22 w = random_ wall(A) % Select one of the remaining walls at random

23 L A.remove_wall(w) % Remove from set of walls

24
25 return A % Return the maze we constructed

For each environment, a goal location was sampled uniformly at random. When subjects took an action
leading to the goal, they transitioned to this location before being teleported to a random location. In the
computational model, this was achieved by feeding the agent an input at this location before teleporting the
agent to the new location. The policy of the agent at this iteration of the network dynamics was ignored,
since the agent was teleported rather than taking an action.
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Reinforcement learning model

We trained our agent to maximize the expected reward, with the expectation taken both over environments
& and the agent’s policy 7:

U =Eg[J(0)] (5)

g, lE @ )] | ©)

Here, U is the wutility function, k indicates the iteration within an episode, and rj, indicates the instantaneous
reward at each iteration. We additionally introduced the following auxiliary losses:

Ly =0.5Vi — Ry)? value function (7)
Ly =E;logm entropy regularization (8)
Lp=— Z {51(3-1 log 3221 + g™ log Q,(:)} internal world model. (9)

2

Here, gi, and Sx41 are additional network outputs representing the agent’s estimate of the current reward
location and upcoming state. g and sy41 are the corresponding ground truth quantities, represented as
one-hot vectors. Ry := Zgzk ri is the empirical cumulative future reward from iteration k onwards, and Vj
is the value function of the agent.

To maximize the utility and minimize the losses, we trained the RL agent on-policy using a policy gradient
algorithm with a baseline (Sutton and Barto, 2018) and parameter updates of the form

Afoc y {(vg log m(ax) + By Vo Vi) Ok — BeVo D Tralogmra+ B0, (10)
A ~T a S— N’
k actor critic entropy predictive
Here, 65, := —Vj, + R}, is the ‘advantage function’, and A, = VoLp is the derivative of the predictive loss

Lp, which was used to train the ‘internal model’ of the agent. 5, = 0.5, 8, = 0.05 and 3. = 0.05 are
hyperparameters controlling the importance of the three auxiliary losses. While we use the predictive model
explicitly in the planning loop, similar auxiliary losses are also commonly used to speed up training by
encouraging the learning of useful representations (Jaderberg et al., 2016).

Our model consisted of a GRU network with 100 hidden units (Cho et al., 2014). The policy was computed as
a linear function of the hidden state followed by a softmax normalization. The value function was computed
as a linear function of the hidden state. The predictions of the next state and reward location were computed
with a neural network that received as input a concatenation of the current hidden state hj and the action
ay sampled from the policy (as a one-hot representation). The output layer of this feedforward network
was split into a part that encoded a distribution over the predicted next state (a vector of 16 grid locations
with softmax normalization), and a part that encoded the predicted reward location in the same way. This
network had a single hidden layer with 33 units and a ReLU nonlinearity.

The model was trained using ADAM (Kingma and Ba, 2015) on 200,000 batches, each consisting of 40
episodes, for a total of 8 x 10% training episodes. These episodes were sampled independently from a total
task space of (273 £13) x 10° tasks (mean + standard error). The total task space was estimated by sampling
50,000 wall configurations and computing the fraction of the resulting 1.25 x 10° pairwise comparisons that
were identical, divided by 16 to account for the possible reward locations. This process was repeated 10
times to estimate a mean and confidence interval. These considerations suggest that the task coverage during
training was ~ 2.9%, which confirms that the majority of tasks seen at test time are novel (although we do
not enforce this explicitly).

For all evaluations of the model, actions were sampled greedily rather than on-policy unless otherwise stated.
This was done since the primary motivation for using a stochastic policy is to explore the space of policies to
improve learning, and performance was better under the greedy policy at test time.
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Planning

Our implementation of ‘planning’ in the form of policy rollouts is described in Algorithm 2. This routine was
invoked whenever a ‘rollout’ was sampled from the policy instead of a physical action.

Algorithm 2: Planning routine for the RL agent

1 input: maximum planning depth (1,4, ), current hidden state (hy), and agent location (sg)

2 parameters: network parameters 6, defining ¢(-), ¢(-), p(g|hk), and p(§|a, h)

3

4 g < argmaxp(g|hi) % predicted goal location

5 il,;€7 Tk, 8 < hy, Tk, 8, % simulated hidden state, policy, and agent location, initialized to true values

6 n <+ 0 % planning iteration

7

8 while n < n4, and Sg1, # g do

9 Ao, ~ ﬁk+n[{a}noip1an] % imagined action sampled on-policy but from physical actions only

10 Skint1 < argmax p(8gtnt1|drin, ilk+n) % predicted next state from current imagined state and
action

11 Zirnt1 — O(8k4nt1,g) % expected observations on next iteration (assuming access to the
function O(+))

12 ilk;+n+1 — O (Zrtnt1, ilk;+n) % simulate agent dynamics

13 Trant1 = C(Rkint1) % generate new policy

14 n < n+ 1 % update planning iteration

15

16 % return action sequence and whether the rollout reached the expected goal
17 return: {&k/}?r”, 0(8k+n,9)

For the network update following a rollout, the input xx,; was augmented with an additional ‘rollout input’
consisting of (i) the sequence of simulated actions, each as a 1-hot vector, and (ii) a binary input indicating
whether the imagined sequence of states reached the imagined goal location. Additionally, the time within
the session was only updated by 120 ms after a rollout in contrast to the 400 ms update after a physical
action or teleportation step.

Note that while both an imagined ‘physical state’ §, and ‘hidden state’ hy, are updated during the rollout, the
agent continues from the original location s, and hidden state hy after the rollout, but with an augmented
input. Additionally, gradients were not propagated through the rollout process, which was considered part
of the ‘environment’. This means that there was no explicit gradient signal that encouraged the policy to
drive useful or informative rollouts. Instead, the rollout process simply relied on the utility of the base policy
optimized for acting in the environment.

Performance by number of rollouts

To quantify the performance as a function of the number of planning steps in the RL agent (Figure 3A), we
simulated each agent in 1,000 different mazes until it first found the goal and was teleported to a random
location. We then proceeded to enforce a particular number of rollouts before the agent was released in trial
2. During this release phase, no more rollouts were allowed — in other words, the policy was re-normalized
over the physical actions, and the probability of performing a rollout was set to zero. Performance was then
quantified as the average number of steps needed to reach the goal during this test phase. The optimal
reference value was computed as the average optimal path length for the corresponding starting states. When
performing more than one sequential rollout prior to taking an action, the policy of the agent can continue to
change through two potential mechanisms. The first is that the agent can explicitly ‘remember’ the action
sequences from multiple rollouts and somehow arbitrate between them. The second is to progressively update
the hidden state in a way that leads to a better expected policy with each rollout, since the feedback from
a rollout is incorporated into the hidden state that induces the policy used to draw the next rollout. On
the basis of the analysis in Figure 5, we expect the second mechanism to be dominant, although we did not
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explicitly test the ability of the agent to ‘remember’ multiple action sequences from sequential rollouts. For
this and all other RNN analyses, the agent executed the most likely action under the policy during ‘testing’
in contrast to the sampling performed during training, where such stochasticity is necessary for exploring the
space of possible actions. All results were qualitatively similar if actions were sampled during the test phase,
although average performance was slightly worse.

Performance in the absence of rollouts and with shuffled rollout times

To quantify the performance of the RL agent in the absence of rollouts, we let the agent receive inputs
and produce outputs as normal. However, we set the probability of performing a rollout under the policy
to zero and re-normalized the policy over the physical actions before choosing an action from the policy.
We compared the average performance of the agent (number of rewards collected) in this setting to the
performance of the default agent in the same environments.

To compare the original performance to an agent with randomized rollout times, we counted the number
of rollouts performed by the default agent in each environment. We then re-sampled a new set of network
iterations at which to perform rollouts, matching the size of this new set to the original number of rollouts
performed in the corresponding environment. Finally, we let the agent interact with the environment again,
while enforcing a rollout on these network iterations, and preventing rollouts at all other timesteps. It is
worth noting that we could not predict a priori the iterations on which the agent would find the goal, at
which point rollouts were not possible. If a rollout had been sampled at such an iteration, we re-sampled this
rollout from the set of remaining network iterations.

Rollouts by network size

To investigate how the frequency of rollouts depended on network size (Figure 5E; Figure S9), we trained
networks with either 60, 80, or 100 hidden units (GRUs). Five networks were trained with each size. At
regular intervals during training, we tested the networks on a series of 5,000 mazes and computed (i) the
average reward per episode, and (ii) the fraction of actions that were rollouts rather than physical actions.
We then plotted the rollout fraction as a function of average reward to see how frequently an agent of a given
size performed rollouts for a particular performance.

Effect of rollouts on agent policy

To quantify the effect of rollouts on the policy of the agent, we simulated each agent in 1,000 different mazes
until it first found the goal and was teleported to a random location. We then resampled rollouts until both
(i) a successful rollout and (ii) an unsuccessful rollout had been sampled. Finally, we quantified 7P"¢(a;)
and 7P°%!(ay) separately for the two scenarios and plotted the results in Figure 3E. Importantly, this means
that each data point in the ‘successful’ analysis had a corresponding data point in the ‘unsuccessful’ analysis
with the exact same maze, location, and hidden state. In this way, we could query the effect of rollouts on
the policy without the confound of how the policy itself affects the rollouts. For this analysis, we discarded
episodes where the first 100 sampled rollouts did not result in both a successful and an unsuccessful rollout.

For Figure S8, we used the same episodes and instead quantified 7(rollout) before and after the rollout,
repeating the analysis for both successful and unsusccessful rollouts.

Overlap between hidden state updates and policy gradients

Using a single rollout (7) to approximate the expectation over trajectories of the gradient of the expected future
reward for a given episode, Vi Jr,:(R), the policy gradient update in h takes the form Ah « (R:—b)Vp log p(7).
Here, Ah is the change in hidden state resulting from the rollout, R; is the ‘reward’ of the simulated trajectory,
b is a constant or state-dependent baseline, and Vj, logp(7) is the gradient with respect to the hidden state
of the log probability of 7 under the policy induced by h. This implies that the derivative of the hidden state

update w.r.t. R;, ofNN .= ";AT’:, should be proportional to aF% := V}, log p(7).

For these analyses, we divided 7 into its constituent actions, defining aEG := Vplogp(ag|ai.x—1) as the

derivative w.r.t. the hidden state of the log probability of taking the simulated action at step k, conditioned
on the actions at all preceding steps (1 to k — 1) being consistent with the rollout. To compute afNN
we also needed to take derivatives w.r.t. R; — the ‘reward’ of a rollout. A naive choice here would be to
simply consider R; to be the input specifying whether the rollout reached the reward or not. However,
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we hypothesized that the agent would also use information about e.g. how long the simulated trajectory
was in its estimate of the ‘goodness’ of a rollout (since a shorter rollout implies that the goal was found
faster). We therefore determined the direction in planning input state space that was most predictive of the
time-to-goal of the agent. We did this by using linear regression to predict the (negative) time-to-next-reward
as a function of the planning feedback x; across episodes and rollouts. This defines the (normalized) direction
U in planning input space that maximally increases the expected future reward. Finally, we defined R; as
the magnitude of the planning input in direction ©, R+ := x; - . We could then compute a*N with this
definition of R: using automatic differentiation.

In Figure 5C, we computed o™ N and ol across 1,000 episodes. We then performed PCA on the set of
a}’G and projected both NN and a!'@ into the space spanned by the top 3 PCs. Finally, we computed the
mean value of both quantities conditioned on a; to visualize the alignment. In Figure 5D, we considered the
same ofNN and af'¢ vectors, now computing the cosine similarity between each pair of vectors before taking
an average. This cosine similarity was still computed in the space spanned by the top 3 PCs since we were
primarily interested in changes in h within the subspace that would affect logp(7). As a control, we repeated
the analysis after altering the planning input x; to falsely inform the agent that it had simulated some other
action Gj cty1 7 1. Finally, we also repeated this analysis using ag G to characterize how the effects of the
planning input propagated through the recurrent network dynamics to modulate future action probabilities.

Human data collection

The human behavioral experiment used in this study has been certified as exempt from IRB review by the
UC San Diego Human Research Protection Program. We collected data from 100 human participants (50
male, 50 female) recruited on Prolific to perform the task described in Figure 1B. Subjects were asked to
complete (i) 6 ‘guided’ episodes where the optimal path was shown explicitly, followed by (ii) 40 non-guided
episodes, and (iii) 12 guided episodes. The task can be found online. During data collection, a subject was
deemed ‘disengaged’, and the trial repeated, if one of three conditions were met: (i) the same key was pressed
5 times in a row, (ii) the same key pair was pressed four times in a row, or (iii) no key was pressed for 7
seconds. Participants were paid a fixed rate of $3 plus a performance-dependent bonus of $0.002 for each
completed trial across both guided and non-guided episodes. The experiment took approximately 22 minutes
to complete, and the average pay across participants was $10.5 per hour including the performance bonus.

The data from 6 participants with a mean response time greater than > 690 ms during the guided episodes
were excluded to avoid including participants who were not sufficiently engaged with the task. For the guided
episodes, only the last 10 episodes were used for further analyses. For the non-guided episodes, we discarded
the first two episodes and used the last 38 episodes. This was done to give participants two episodes to
get used to the task for each of the two conditions, and the first set of guided episodes was intended as an
instruction in how to perform the task.

Performance as a function of trial number

We considered all episodes where the humans or RL agents completed at least four trials, evaluating the RL
agents across 50,000 episodes. We then computed the average across these episodes of the number of steps to
goal as a function of trial number separately for all subjects. Figure 2A illustrates the mean and standard
error across subjects (human participants or RL agents). The optimal value during the exploitation phase was
computed by using dynamic programming to find the shortest path between each possible starting location
and the goal location, averaged across all environments seen by the RL agent. To compute the exploration
baseline, brute force search was used to identify the path that explored the full environment as fast as possible.
The optimal exploration performance was then computed as the expected time-to-first-reward under this
policy, averaged over all possible goal locations.

Estimation of thinking times

In broad strokes, we assumed that for each action, the response time ¢, is the sum of a thinking time ¢; and
some perception-action delay, both subject to independent variability:

t, =1ty +tq with & ~p, and tq~ pq. (11)
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Here, {t;,t;,ta} > 0 since elapsed time cannot be negative. We assumed that the prior distribution over
perception-action delays, pq, was identical during guided and non-guided trials. For each subject, we obtained
a good model of pq (see below) by considering the distribution of response times measured during guided
trials. This was possible because guided trials involved no ‘thinking’ by definition, such that tq = ¢, was
directly observed. Finally, for any non-guided trial with observed response t,, we formed a point estimate of
the thinking time by computing the mean of the posterior p(¢;|t;):

Eoje, = Epey e [te]- (12)

In more detail, we took p; during guided trials to be uniform between 0 and 7 s — the maximum response
time allowed, beyond which subjects were considered disengaged, and the trial was discarded and reset. For
pa(ta), we assumed a shifted log-normal distribution,

1 exp |— (10g(td—5)—lt)2} ifty > 6

pa(ta; p,0,0) = { (ta=0)o V2 202 (13)

0 otherwise

with parameters u, o, and § obtained via maximum likelihood estimation based on on the collection of
response times t, = tq observed during guided trials. For a given ¢§, the maximum likelihood values of p and
o are simply given by the mean and standard deviation of the logarithm of the observations. To fit this
shifted log-normal model, we thus performed a grid search over § € [0, min(¢8"9°d) — 1] at 1 ms resolution
and selected the value under which the optimal (u, o) gave the largest likelihood. This range of § was chosen
to ensure that (i) only positive values of t8%4ed had positive probability, and (ii) all observed t&8%ded had
non-zero probability. We then retained the optimal u, o, and § to define the prior over pq(tq) on guided trials
for each subject.

According to Bayes’ rule, the posterior is proportional to

p(te]t:) oc p(te[te)p(te) (14)

where
p(tilt) = / dta pa(ta) p(telte, ta) (15)
0

- / " dta palta)8(ta — (1 — 1) (16)

= pa(t: — t) (17)
Therefore, the posterior is given by
pd(tr — tt) if tt >0
p(tifte) o { 0 otherwise, (18)
resulting in the following posterior mean:
~ te
to), = Epe e [te] =t — / tapa(talta < tesp,0,0)dtq. (19)
s

Here, pqa(ta|ta < t.) denotes p4(tq) re-normalized over the interval tq < ¢, and the condition (t4 < t,) is
equivalent to (t; > 0). We note that the integral runs from 0 to ¢, since pq(tq) = 0 for tq < . As ¢ simply
shifts the distribution over tq, we can rewrite this as

ty—0d
b, =t — 6 — / zpa(zle <ty —dp,0,0 =0)de. (20)
0

This is useful since the conditional expectation of a log-normally distributed random variable with 6 = 0 is
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given in closed form by

k
E,olzle < k| = / zp(zlx < k;p,0,6 =0)dz (21)
0

P (log(k)—u—UQ)
]

o

(e

= exp|p + 0.502 (22)

where ®(-) is the cumulative density function of the standard Gaussian, N'(0,1). This allows us to compute
the posterior mean thinking time for an observed response time ¢, in closed form as

tAt‘tr = tr — 5 — Emg[ﬂx < tr — 5] (23)

We note that the support of pg(tq|ta < ty; u,0,0) is tq € [0,1,]. For 0.6% of the non-guided decisions, the value
of t, was lower than the estimated ¢ for the corresponding participant, in which case p(t4|t;) is undefined.
In such cases, we defined the thinking time to be ft‘tr = 0, since the response time was shorter than our
estimated minimum perception-action delay. A necessary (but not sufficient) condition for ¢, < § is that ¢, is
smaller than the smallest response time in the guided trials.

The whole procedure of fitting and inference described above was repeated separately for actions that
immediately followed a teleportation step (i.e. the first action in each trial) and for all other actions. This
is because we expected the first action in each trial to be associated with an additional perceptual delay
compared to actions that followed a predictable transition.

All results were qualitatively similar using other methods for estimating thinking time, including (i) a
log-normal prior over t4 with no shift (§ = 0), (ii) using the posterior mode instead of the posterior mean, (iii)
estimating a constant tq from the guided trials, and (iv) estimating a constant tq as the 0.1 or 0.25 quantile
of t, from the non-guided trials.

Thinking times in different situations

To investigate how the thinking time varied in different situations, we considered only exploitation trials
and computed for every action (i) the minimum distance to the goal at the beginning of the corresponding
trial, and (ii) what action number this was within the trial. We then computed the mean thinking time as a
function of action number separately for each distance-to-goal. This analysis was repeated across experimental
subjects and results reported as mean and standard error across subjects.

We repeated this analysis for the RL agents, where ‘thinking time’ was now defined based on the average
number of rollouts performed, conditioned on action-within-trial and original distance to goal.

Comparison of human and model thinking times

For each subject and each RL agent, we clamped the trajectory of the agent to that taken by the subject
(i.e. we used the human actions instead of sampling from the policy). After taking an action, we recorded
m(rollout) under the model on the first timestep of the new state for comparison with human thinking times.
We then sampled a rollout with probability 7(rollout) and took an action (identical to the next human action)
with probability 1 — w(rollout), repeating this process until the next state was reached. Finally, we computed
the average m(rollout) across 20 iterations of each RL agent for comparison with the human thinking time in
each state. Figure 2E shows the human thinking time as a function of 7(rollout), with the bars and error
bars illustrating the mean and standard error in each bin. For this analysis, data was aggregated across all
participants. Results were similar if we compared human thinking times with the average number of rollouts
performed rather than the initial 7(rollout).

In Figure 2F, we computed the correlation between thinking time and various regressors on a participant-by-
participant basis and report the result as mean and standard error across participants (n = 94). For the
‘residual’ correlation, we first computed the mean thinking time for each distance-to-goal for each participant
and the corresponding mean m(rollout) for the RL agents. We then subtracted the appropriate mean values
from the thinking times and 7(rollout) in the human participants and RL agents. In other words, we
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subtracted the average thinking time for situations 5 steps from the goal from all data points where the
participant was 5 steps from the goal etc. Finally, we computed the correlation between the residual 7(rollout)
and the residual thinking times. This analysis was repeated across all participants and the result reported as
mean and standard error across participants. Note that all ‘distance-to-goal’ measures refer to the shortest
path to goal rather than the number of steps actually taken by the participant to reach the goal.

Analysis of hippocampal replays

For our analyses of hippocampal replays in rats, we used data recently recorded by Widloski and Foster
(2022). This dataset consisted of a total of 37 sessions from 3 rats (n = 17, 12, 8 sessions for each rat) as
they performed a dynamic maze task. This task was carried out in a square arena with 9 putative reward
locations. In each session, six walls were placed in the arena, and a single reward location was randomly
selected as the ‘home’ well. The task involved alternating between moving to this home well and a randomly
selected ‘away’ well. Importantly, a delay of 5-15 s was imposed between the animal leaving the previous
rewarded well before reward (chocolate milk) became available at the next rewarded well. On the away trials,
the emergence of reward was also accompanied by a visual cue at the rewarded well, informing the animal
that this was the reward location. In a given session, the animals generally performed around 80 trials (40
home trials and 40 away trials; Figure S6). For further task details, we refer to Widloski and Foster (2022).

For our analyses, we only included trials which lasted less than 40 seconds. We did this to discard time
periods where the animals were not engaged with the task. Additionally, we discarded the first home trial of
each session, where the home location was unknown, since we wanted to compare the hippocampal replays
with model rollouts during the exploitation phase of the maze task. For all analyses, we discretized the
environment into a 5x5 grid (the 3x3 grid of wells and an additional square of states around these) in order
to facilitate more direct comparisons with our human and RNN task. Following Widloski and Foster (2022),
we defined ‘movement epochs’ as times where the animal had a velocity greater than 2 ¢cm/s and ‘stationary
epochs’ as times there the animal had a velocity less than 2 cm/s.

Replay detection

To detect replays, we followed Widloski and Foster (2022) and fitted a Bayesian decoder to neural activity as a
function of position during movement epochs in each session, assuming Poisson noise statistics and considering
only neurons with an average firing rate of at least 0.1 Hz over the course of the session. This decoder was
trained on a rolling window of neural activity spanning 75 ms and sampled at 5 ms intervals (Widloski and
Foster, 2022). We then detected replays during stationary epochs by classifying each momentary hippocampal
state as the maximum likelihood state under the Bayesian decoder, again using neural activity in 75 ms
windows at 5 ms intervals. Forward replays were defined as sequences of states which included 2 consecutive
transitions to an adjacent state (i.e. a temporally and spatially contiguous sequence of three or more states),
and which originated at the true animal location. For all animals, we only analyzed replays where the animal
was at the previous reward location before it initiated the new trial (c.f. Widloski and Foster, 2022). To
increase noise robustness, we allowed for short ‘lapses’ in a replay, defined as periods with a duration less than
or equal to 20 ms, where the decoded location moved to a distant location before returning to the previously
decoded location. These lapses were ignored for downstream analyses.

‘Wall avoidance

To compute the wall avoidance of replays (Figure 4B), we calculated the fraction of state transitions that
passed through a wall. This was done across all replays preceding a ‘home’ trial (i.e. when the animal knew
the next goal). As a control, we computed the same quantity averaged over 7 control conditions, which
corresponded to the remaining non-identical rotations and reflections of the walls from the corresponding
session. We repeated this analysis for all sessions and report the results in Figure 4 as mean and standard error
across sessions. To test for significance, we randomly permuted the ‘true’ and ‘control’ labels independently
for each session and computed the fraction of permutations (out of 10,000), where the difference between
‘control” and ‘true’ was larger than the experimentally observed value.

This analysis was also repeated in the RL agent, where the control value was computed with respect to 50,000
other wall configurations sampled from the maze generating algorithm (Algorithm 1).
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Reward enrichment

To compute the reward enrichment in hippocampal replays (Figure 4C), we computed the fraction of all
replays preceding a ‘home’ trial that passed through the reward location. As a control, we repeated this
analysis for the remaining 7 locations that were neither the reward location nor the current agent location
(for each replay). Control values are reported as the average across these 7 control locations across all replays.
This analysis was repeated for all sessions. To test for significance, we randomly permuted the ‘goal’ and
‘control’ labels independently for each session and computed the fraction of permutations (out of 10,000)
where the difference between ‘goal’ and ‘control’ was larger than the experimentally observed value.

This analysis was also repeated in the RL agent, where the control value was computed across the remaining
14 possible goal locations (that were not the current location or true goal).

Behavior by replay type

To investigate how the animal behavior depended on the type of replay (Figure 4D), we analyzed home trials
and away trials separately. We constructed a list of all the ‘first” replayed actions a;, defined as the cardinal
direction corresponding to the first state transition in each replay. We then constructed a corresponding list
of the first physical action following the replay, corresponding to the cardinal direction of the first physical
state transition after the replay. Finally, we computed the overlap between these two vectors to arrive at the
probability of ‘following’ a replay. This overlap was computed separately for ‘successful’ and ‘unsuccessful’
replays, where successful replays were defined as those that reached the goal without passing through a
wall. For the unsuccessful replays, we considered the 7 remaining locations that were not the current animal
location or current goal. We then computed the average overlap under the assumption that each of these
locations were the goal, while discarding replays that were successful for the ‘true’ goal. This analysis was
performed independently across all sessions and results reported as mean and standard error across sessions.
To test for significance, we randomly permuted the ‘successful’ and ‘unsuccessful’ labels independently for each
session and computed the fraction of permutations (out of 10,000) where the difference between successful
and unsuccessful replays was larger than the experimentally observed value.

This analysis was also repeated in the RL agent, where we considered all exploitation trials together since
they were not divided into ‘home’ or ‘away’ trials. In this case, the control was computed with respect to all
14 locations that were not the current location or current goal location.

Effect of consecutive replays

To compute how the probability of a replay being ‘successful’ depended on replay number (Figure 4E),
we considered all trials where an animal performed at least 3 replays. We then computed a binary vector
indicating whether each replay was successful or not. From this vector, we subtracted the expected success
frequency from a linear model predicting success from (i) the time since arriving at the current well, and (ii)
the time until departing the current well. We did this to account for any effect of time that was separate
from the effect of replay number, since such an effect has previously been reported by Olafsdottir et al.
(2017). However, this work also notes that many of what they denote ‘disengaged’ replays are non-local
and would automatically be filtered out by our focus on local replays. When fitting this linear model, we
capped all time differences at a maximum value of |At| = 15 s to avoid the analysis being dominated by
outliers, and because Olafsdéttir et al. (2017) only observe an effect for time differences in this range. Our
results were not sensitive to altering or removing this threshold. We then conditioned on replay number
and computed the probability of success (after regressing out time) as a function of replay number. Finally,
we repeated this analysis for all 7 control locations for each replay and divided the true values by control
values defined as the average across replays of the average across control locations. A separate correction
factor was subtracted from these control locations, which was computed by fitting a linear model to predict
the average probability of successfully reaching a control location as a function of the predictors described
above. The normalization by control locations was done to account for changes in replay statistics that might
affect the results, such as systematically increasing or decreasing replay durations with replay number. To
compute the statistical significance of the increase in goal over-representation, we also performed this analysis
after independently permuting the order of the replays in each trial to break any temporal structure. This
permutation was performed after regressing out the effect of time. We repeated this analysis across 10,000
independent permutations and computed statistical significance as the number of permutations for which the
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increase in over-representation was greater than or equal to the experimental value.

For the corresponding analysis in the RL agents, we did not regress out time since there is no separability
between time and replay number. Additionally, the RL agent cannot alter its policy in the absence of explicit
network updates — which in our model are always tied to either a rollout or an action. As noted in the main
text, an increase in the probability of ‘success’ with replay number in the RL agent could also arise from the
fact that performing further replays is less likely after a successful replay than after an unsuccessful replay
(Figure S8). We therefore performed the analysis of consecutive replays in the RL agent in a ‘crossvalidated’
manner at the level of the policy. In other words, every time the agent performed a rollout, we drew two
samples from the rollout generation process. The first of these samples was used as normal by the agent to
update hj and drive future behavior. The second sample was never used by the agent, but was instead used
to compute the ‘success frequency’ for our analyses. This was done to break the correlation between the
choice of performing a replay and the assessment of how good the policy was, which allowed us to compute
an unbiased estimate of the quality of the policy as a function of replay number. As mentioned in the main
text, such an analysis is not possible in the biological data. However, since the biological task was not a
reaction time task, we expect less of a causal effect of replay success on the number of replays. Additionally,
as noted in the text, if some of the effect in the biological data is in fact driven by a decreased propensity for
further replays after a successful replay, that is in itself supporting evidence for a theory of replays as a form
of planning.

34


https://doi.org/10.1101/2023.01.16.523429
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.16.523429; this version posted January 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary note on experimental and architectural choices

In this short note, we discuss some of the many architectural and modeling choices that went into our work.
As is the case for much work in modern computational neuroscience, the space of models was vast — and
larger than we could feasibly explore fully in a single paper. In what follows, we hope to provide some
additional motivation for the choices that were made in the main paper and to provide additional intuition
for the importance and effect of various architectural choices and hyperparameters in our work. This note is
also unlikely to be exhaustive, but we hope that it will be useful both for the reader hoping to gain a deeper
understanding of our work, and for those looking to draw inspiration from it in their own computational
models.

Network size

The size of the network used in our work is of some importance. We show in Figure S3 that our key results
hold across a range of different network sizes. However, as the network becomes larger, its model-free ‘base
policy’ also becomes better — to the point where rollouts become less and less useful as there is less room for
improvement from the base policy. Indeed, in the limit of an infinitely large network trained on an infinitely
large dataset, we expect a perfect base policy and no rollouts. On the contrary, if the network gets too small,
it is unlikely to be able to learn how to use the rollouts for policy improvement, and we again expect rollouts
to be less useful. In both limits, we also expect the notions of ‘large’ and ‘small’ to depend on the complexity
of the task in question. For the task considered in this study, we found substantial use of rollouts across a
range of network sizes between 40 to 140, and we found that the frequency of rollouts tended to decrease
with network size (Figure S9). We did not test any networks larger than 140 units due to computational
constraints associated with the training of large networks. The exact range of sizes for which our results hold
will also depend on the type of network used, with LSTMs likely to be similar to the GRUs used in this work,
and vanilla RNNs probably needing larger networks for comparable performance.

Planning horizon

In this work, we assumed a constant planning horizon of L = 8 steps and showed in Figure S3 that our key
results are robust to changes to this hyperparameter between 4 and 12 (we did not test values outside this
range). We chose a value of 8 for the main paper since it seemed like a reasonable planning depth in our fairly
simple task with a relatively small action space, and it is comparable to the planning depth estimated in other
simple games (van Opheusden et al., 2021). It is worth noting that some aspects of our results do change
with planning depth. In particular, the change in policy for successful and unsuccessful rollouts is dependent
on L, such that longer planning horizons lead to smaller average policy changes for successful rollouts and
larger changes for unsuccessful rollouts. In the language of policy gradients, we expect that this is because the
‘baseline’ implicitly used by the network in its state update is related to the average success of a rollout. In
other words, if almost all rollouts are successful (because L is sufficiently large), little is learned by observing
that a rollout is successful, and the policy should not change much on the basis of this information. It is
possible that there will be larger average policy changes in this setting if we instead condition on how late
in the rollout the reward was found, which contains more information about the ‘goodness’ of the replayed
trajectory. It would also be possible to make the planning horizon variable and let the agent itself choose
its planning depth. This could be done in two different ways, namely by (i) making the agent decide up
front how long a trajectory it wants to simulate, or (ii) letting the agent decide in closed-loop by iteratively
returning a partial plan and deciding whether to continue planning or terminate and take a physical action.
We opted for the simple fixed length solution since it has a smaller action space and fewer network iterations,
making optimization easier. However, we expect that a variable planning length model is closer to real human
behavior and believe that this will be an interesting avenue for future research.

Time cost of acting and planning

Related to the discussion of planning depth, we also assumed a constant temporal opportunity cost of planning
for the agent. This was done despite the rollouts having variable length depending on whether and when the
goal was reached during the rollout. We did this because the agent did not know a priori how long the rollout
would be and had no direct control over its length. In the case of hippocampal replays being contained in
sharp-wave ripples (SWRs), this is consistent with an assumption that a single trajectory occurs in a single
SWR, and that the inter-SWR interval is independent of the length of the replayed trajectory. We did not
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train any agents with a variable temporal opportunity cost but do not expect any substantial differences
from our current results.

More specifically, we defined a rollout in the model to last 120 ms. This is similar to the duration of
hippocampal replays reported in the literature (Kurth-Nelson et al., 2016). In contrast, a single model
action was defined to take 400 ms. These values were not directly fitted to the human data, as all model
hyperparameters, including the episode length and relative cost of planning and acting, were chosen before
any analyses of human behavior to avoid overfitting. Instead, the relative cost of rollouts compared to actions
in the model, Bron := Atoliout/Ataction = 0.3, was chosen such that there was regular use of rollouts in the
task. The episode length T" = 50 actions was chosen to facilitate training of the model. We then designed our
human behavioral experiment in a way that allowed participants to take approximately the same number of
actions in a given episode as the model, which motivated an episode length of T' = 20 seconds. This implicitly
defined the ‘duration’ of a model action as At,etion = 20 seconds/50 actions = 400 ms. The duration of a
rollout was then defined as At ol0ut = Bron X 400 ms = 120 ms. Since we did not explicitly fit these parameters
to the data, there are likely to be a range of parameter choices that lead to better fits to the human data
from this particular experiment. Similarly, there is most definitely a range of hyperparameters that lead
to worse data fits. Indeed our goal was not to chase the lowest possible discrepancy from human response
times, but rather to demonstrate the general concept that models with the ability to perform rollouts do so
in similar situations to humans. This is also the reason that we focus on correlations in the paper rather than
e.g. MSEs, since the model ‘thinking times’ can be stretched, compressed, and shifted to different extents by
altering the model hyperparameters.

Policy used for planning

In our work, we assumed that the policy used within the planning loop (i.e. the policy from which actions
were sampled during a rollout) was the same as the policy used for sampling actions when actually interacting
with the environment. We did this both for simplicity of exposition and computation, and because we think
it is likely to be a reasonable approximation to how humans plan. However, there is in theory nothing in our
model that prevents the rollout policy from differing from the action policy. In this case, rollouts can still be
used to estimate gradients of the future reward with respect to the hidden state, provided that the policy
from which rollout actions are sampled is known. This could be done e.g. through the use of importance
sampling for off-policy learning. Additionally, in the case of sequential replays, it is plausible that previous
replays directly affect future replays, e.g. in a process of exploration. In our current model, there was no
option to systematically explore, and previous replays only affected future replays through their effect on
the base policy. In theory, it would also be possible to more systematically explore the state space using
sequential replays, and indeed we did experiment with ‘rollouts’ corresponding to node expansions of more
advanced search algorithms, which can similarly be used to drive improved decision making. More generally,
it would also be possible to optimize the rollout policy explicitly for planning by differentiating through the
rollout process. This is in contrast to the present work, where the rollout policy was tied to the base policy,
and rollouts were treated as part of the ‘environment’. This meant that there was no propagation of gradients
to allow for explicit adaptation of the policy to be better for planning.

Feedback from planning

When performing a rollout, the agent received an additional input on the subsequent timestep consisting of
(i) a flattened array of the simulated actions, and (ii) a binary input indicating whether or not the rollout
reached the (imagined) goal. Another reasonable choice of feedback input would be to return the sequence of
states instead of the sequence of actions, or potentially to return both. Our reason for favoring the action
sequence was primarily that the action space is lower dimensional (4) than the state space (16), which means
that the input dimensionality is much lower than it would have been for the state sequence, assuming a
one-hot encoding. This does raise the question of where this action sequence would emerge in biological
circuits, given that hippocampal replays are canonically assumed to contain spatial information. However,
we consider it reasonable that this state information could be converted to information about the actions
that would take you there. Instead of returning a binary input of whether the goal was reached, the rollout
process could also return the output of a learned value function. We did experiment with returning both the
binary ‘goal’” feedback and the imagined value function, and we found that the agent predominantly used the
goal information in this case. We therefore chose to remove the learned value from the feedback to simplify
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the model. However, we imagine that returning a learned value function would be useful in more complicated
tasks with multiple or non-binary rewards.

Stochastic environments and multiple goals

For simplicity, we assumed that the environment was deterministic and that there was only a single goal.
However, our model could also be extended to the setting of stochastic environments and multiple or non-
binary rewards. In the case of stochastic environments, the agent would still need to simulate a sample from
the policy. The internal world model was already trained to generate a distribution over new states, and
in stochastic environments, we would want to sample from this distribution instead of using the maximum
likelihood next state. Provided that the agent has learned a well-calibrated distribution over state transitions,
the resulting rollout should still provide an unbiased estimate of the gradient of expected future reward with
respect to the hidden state. In the case of multiple goals, it would still be possible to use the agent as-is
and return a binary indicator of whether the agent reached any (or each) goal. However, as noted above, it
would also be possible to return a learned value estimate instead of the binary goal information. In cases
where these goals do not lead to random teleportation, it could also be useful to let the rollout continue
beyond the goal. We chose not to do so in the present work, since the transition after reaching the goal
was entirely unpredictable, so the simulated action sequence beyond this point would not be informative of
expected reward.

Space in which to plan

We chose rollouts to occur in the space of states and observations. More specifically, the agent had to predict
the upcoming state s;, and a new observation x; was constructed automatically from s; during the rollout.
An alternative would have been to directly learn to predict @, which we decided not to do since the majority
of the input was constant within an episode. However, in more general task settings, where the environment
is more variable, it might be simpler to predict the input directly. Additionally, in partially observable
environments, there is a weaker correspondence between states and observations, and rollouts would require
samples from the distribution over possible observations. This could either be done directly in observation
space or indirectly via some inferred (or known) latent state space.

We consider it likely that humans do not plan explicitly in pixel space and instead use some form of latent
planning representation. In the present work, this was also the case to some extent, since the agent input
was already an abstract representation. However, in future work, it could be interesting to use a learned
latent space instead. This could e.g. be done by training an autoencoder to reconstruct the state and
reward information as in the VariBAD model (Zintgraf et al., 2019). Alternatively, planning could take
place in a latent space explicitly optimized to yield good plans as in MuZero (Schrittwieser et al., 2020). We
did not experiment with any of these possibilities but believe that the results would be comparable to our
present work. A major reason for our choice to implement planning in the space of state transitions is that
performing high-fidelity rollouts in state space only requires the agent to learn a state transition function. As
has been demonstrated in previous work, a transition function could feasibly be learned in a self-supervised
manner (Whittington et al., 2020), allowing agents to learn how to plan with little task-specific information.
Additionally, rollouts in state space have close parallels to hippocampal replays as detailed in Figure 4.

Choice of task

The task used for human behavioral experiments and RL agents differs somewhat from the task used for
the hippocampal replay data. Notable differences include (i) the presence of ‘away’ trials in the rodent data
instead of the teleportation step in the human data, (ii) the different maze sizes and wall configurations,
and (iii) the presence of a forced delay between rewards in the rodent data. A natural question is thus why
we did not match the human and RL task to the rodent task, which we could not change since it relied on
previously published data. There were a few major reasons for our decision to use different tasks for the
humans and RL agents compared to the rodent experiments. One is that the rodent task was not a reaction
time task, meaning that there was a forced delay between consecutive rewards. If we introduced a similar
delay in the human task, there would be no incentive to act fast. Unfortunately, since we do not have access
to intracortical recordings from the human subjects, the speed of acting is the major signal we analyse from
our human participants, and it is therefore necessary with a reaction time task. Of course we could still have
included away trials and used similar arenas without enforcing a delay between rewards. However, we cared
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mostly about the ‘home’ trials and therefore saw no reason to make participants spend half their time on
‘away’ trials. Additionally, the smaller Euclidean maze used in the rodent experiments would likely have been
too simple for humans and reduced our signal to noise ratio, since there would be less time spent thinking. A
simpler task and arena might similarly be simple enough that our RNNs could solve it in a fully ‘model-free’
manner without relying on rollouts to the same extent as in the present work. It is interesting to note that
such suboptimality is a key factor of our results, but we believe that this is representative of human behavior
as well, where thinking is mostly utilized in scenarios where we do not already know what to do.

Regularizing time or energy

In our RL agent, we did not incorporate any explicit energy costs for either actions or rollouts. Instead,
the only unit of ‘cost’ was time elapsed. We did this since the only explicit incentive to be efficient in our
human task was that fast decision making and good actions left more time for collecting reward. It could of
course be argued that there is also some energy cost associated with taking actions in our online task, but (i)
this energy cost is likely to be negligible, and (ii) if we wanted to model such energy costs in the RL agent,
it would require us to introduce an additional hyperparameter to convert between ‘energy’ and ‘time’. We
considered it more interpretable and robust to only operate in the space of time, and we also believe that this
is representative of many tasks encountered in our daily lives.
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